除了第二輔因子之外,光裂合酶也可根據序列相似性分為兩種,第一種主要在革蘭氏陰性菌、陽性菌、嗜鹽古菌、真菌,和植物體內。Proteins containing this domain also include Arabidopsis thalianacryptochrome(英语:cryptochrome)s 1 and 2, which are blue light photoreceptors that mediate blue light-induced gene expression and modulation of circadian rhythms.
、可以將光裂合酶分為兩類。The first class contains enzymes from Gram-negative and Gram-positive bacteria, the halophilic archaebacteria Halobacterium halobium,以及真菌與植物。阿拉伯芥的Cryptochrome(英语:Cryptochrome) 1與2亦含有此種結構域,作為促進藍光基因表現與調整昼夜节律的光受體。
The second class are named cryptochrome (Cry), found in species as diverse as Drosophila, Arabidopsis, Synechocystis, and Human (Cry-DASH). These were previously assumed to have no DNA repair activity because of negligible activity on double-stranded DNA. A study[4] by A. Sancar and P. Selby provided evidence to suggest this branch of cryptochromes have photolyase activity with a high degree of specificity for cyclobutane pyrimidine dimers in single-stranded DNA. Their study showed that VcCry1 from Vibrio cholerae, X1Cry from Xenopus laevis, and AtCry3 from Arabidopsis thaliana all had photolyase activity on UV irradiated ssDNA in vitro.
^Yamamoto J, Shimizu K, Kanda T, Hosokawa Y, Iwai S, Plaza P, Müller P. Loss of Fourth Electron-Transferring Tryptophan in Animal (6-4) Photolyase Impairs DNA Repair Activity in Bacterial Cells. Biochemistry. October 2017, 56 (40): 5356–5364. PMID 28880077. doi:10.1021/acs.biochem.7b00366.
^Sancar A. Structure and function of DNA photolyase and cryptochrome blue-light photoreceptors. Chemical Reviews. June 2003, 103 (6): 2203–37. PMID 12797829. doi:10.1021/cr0204348.