Напівпростий модульНапівпрості модулі — модулі, які є прямою сумою простих модулів. Кільце, що є напівпростим модулем над самим собою, називається напівпростим кільцем. Важливий приклад напівпростих кілець — групове кільце скінченної групи над полем характеристики нуль. Структура напівпростих кілець описується теоремою Веддерберна — Артіна: всі такі кільця є прямими добутками кілець матриць. ВизначенняНаводяться три еквівалентних [1] визначення напівпростих модулів: модуль M називається напівпростим, якщо
Властивості
Нехай A — алгебра над полем k. Лівий модуль M над A називається абсолютно напівпростим якщо для будь-якого розширення F поля k, є напівпростим модулем над . Напівпрості кільцяКільце називається напівпростим (зліва) якщо воно є напівпростим як (лівий) модуль над самим собою. Виявляється, що напівпрості зліва кільця напівпрості справа і навпаки, так що можна говорити про напівпрості кільця. Будь-які ліві і праві модулі над напівпростим кільцем є напівпростими модулями. Напівпрості кільця можна охарактеризувати в термінах гомологічної алгебри: кільце R є напівпростим тоді і тільки тоді, коли будь-яка коротка точна послідовність (лівих) R-модулів розщеплюється. Зокрема, модуль над напівпростим кільцем є ін'єктивним і проективним. Напівпрості кільця є одночасно артиновими і нетеровими. Якщо існує гомоморфізм з поля в напівкільце, воно називається напівпростою алгеброю. Приклади
Теорема Веддерберна — АртінаТеорема Веддерберна — Артіна стверджує, що будь-яке напівпросте кільце є ізоморфним прямому добутку кілець матриць ni на ni з елементами в тілі Di, причому числа ni визначені однозначно, і тіла — з точністю до ізоморфізму. Зокрема, просте кільце є ізоморфним кільцю матриць над тілом. Оригінальний результат Джозефа Веддерберна полягав у тому, що просте кільце, яке є скінченновимірною простою алгеброю над тілом є ізоморфним кільцю матриць. Еміль Артін узагальнив теорему на випадок напівпростих (артинових) кілець. Приклади випадків, в яких можна застосувати теорему Веддерберна — Артіна: кожна скінченновимірна проста алгебра над R є кільцем матриць над R, C або H (кватерніонами), кожна скінченновимірна проста алгебра над С є кільцем матриць над С. Примітки
Література
|