Аксіоми Ейленберга — СтінродаУ [математика|математиці]], зокрема в алгебричній топології, аксіоми Ейленберга — Стінрода є властивостями, яким задовольняють деякі теорії гомологій топологічних просторів. Найвідомішим таким прикладом є сингулярні гомології. Теорію гомології можна визначити як послідовність функторів, що задовольняють аксіоми Ейленберга — Стінрода. Аксіоматичний підхід, розроблений у 1945 році, дозволяє довести важливі результати, такі як послідовність Маєра — Вієторіса, що є загальними для всіх теорій гомологій, що задовольняють аксіоми. Якщо опустити аксіому розмірності (описану нижче), то решта аксіом визначають те, що називається надзвичайною теорією гомології. Надзвичайні теорії когомології вперше виникли в K-теорії та кобордизмі . АксіомиАксіоми Ейленберга — Стінрода застосовуються до послідовності фукторів з категорії пар топологічних просторів до категорії абелевих груп разом із натуральним перетворенням що називається граничним відображенням (тут позначає . Аксіоми:
Якщо P — простір з однією точкою, то називається групою коефіцієнтів. Наприклад, сингулярна гомологія (взята з цілими коефіцієнтами, як це найчастіше) має як коефіцієнти цілі числа. НаслідкиДеякі факти про групи гомології можуть бути виведені безпосередньо з аксіом, наприклад, той факт, що гомотопічно еквівалентні простори мають ізоморфні групи гомології. Гомологію деяких відносно простих просторів, таких як n-сфери , можна обчислити безпосередньо з аксіом. Також можна легко показати, що (n - 1)-сфера не є ретрактом n-кулі. Це використовується в доведенні теореми Брауера про нерухому точку. Аксіома розмірності"Гомологічна" теорія, що задовольняє всі аксіоми Ейленберга-Стінрода, крім аксіоми розмірності, називається надзвичайною теорією гомології (двоїсто є також надзвичайна теорія когомологій). Важливі приклади таких гомологій і когомологій були знайдені в 1950-х роках, такі як топологічна К-теорія та теорія кобордизму, які є надзвичайними когомологічними теоріями, і двоїсті для них теорії гомологій. Див. такожЛітература
|
Portal di Ensiklopedia Dunia