Ізопериметрична точкаУ геометрії ізопериметрична точка — це особлива точка, пов'язана з плоским трикутником. Термін був спочатку введений Г. Р. Вельдкампом у статті, опублікованій в American Mathematical Monthly в 1985 році, для позначення точки P у площині трикутника ABC, яка має властивість, що трикутники PBC, PCA і PAB мають рівні периметри, тобто[1][2]
Ізопериметричні точки в розумінні Вельдкампа існують лише для трикутників, які задовольняють певним умовам. Ізопериметрична точка трикутника ABC у розумінні Вельдкампа, якщо вона існує, має такі трилінійні координати:[3]
Для будь-якого трикутника ABC можна пов'язати з ним точку P, що має трилінійні координати, як зазначено вище. Ця точка є чудовою точкою трикутника, і в Енциклопедії центрів трикутника Кларка Кімберлінга (ETC) вона називається ізопериметричною точкою трикутника ABC. Її позначають як центр трикутника X(175).[4] Точка X(175) не обов'язково є ізопериметричною точкою трикутника ABC у сенсі Вельдкампа. Проте, якщо існує ізопериметрична точка трикутника ABC у розумінні Вельдкампа, то вона буде тотожною точці X(175). Точка P з властивістю трикутників PBC, PCA і PAB мати рівні периметри була досліджена ще в 1890 році в статті Еміля Лемуана.[4][5] Існування ізопериметричної точки в розумінні ВельдкампаНехай ABC — довільний трикутник, довжини його сторін дорівнюють a, b і c, радіус описаного кола дорівнює R, а радіус вписаного кола — r. Необхідну і достатню умову існування ізопериметричної точки в розумінні Вельдкампа можна сформулювати так.[1]
Для всіх гострокутних трикутників ABC маємо a + b + c > 4R + r, тому всі гострокутні трикутники мають ізопериметричну точку в розумінні Вельдкампа. ВластивостіНехай P — чудова точка трикутника X(175) трикутника ABC.[4] Тоді:
Кола СоддіДля даного трикутника ABC можна накреслити кола в площині трикутника ABC з центрами в точках A, B і C так, щоб вони дотикалися один до одного зовні. Загалом, можна намалювати два нових кола, кожне з яких буде дотичним до трьох кіл з центрами A, B, C. (Одне з кіл може виродитися в пряму лінію.) Ці кола називають колами Содді трикутника ABC. Коло з меншим радіусом є внутрішнім колом Содді, а його центр називається внутрішньою точкою Содді або внутрішнім центром Содді трикутника ABC. Коло з більшим радіусом є зовнішнім колом Содді, а його центр називається зовнішньою точкою Содді або зовнішнім центром Содді трикутника ABC.[6][7] Чудова точка трикутника X(175), ізопериметрична точка в розумінні Кімберлінга, є зовнішньою точкою Содді трикутника ABC. Примітки
Посилання
|
Portal di Ensiklopedia Dunia