ในคณิตศาสตร์ คู่อันดับ (a, b) เป็นคู่ของวัตถุทางคณิตศาสตร์ โดย a เรียกว่า สมาชิกตัวหน้า และ b เรียกว่า สมาชิกตัวหลัง คู่อันดับอาจจะมองเป็นพิกัดก็ได้ สำหรับคู่อันดับนั้น อันดับมีความสำคัญ นั่นคือคู่อันดับ (a, b) แตกต่างจากคู่อันดับ (b, a) ยกเว้นกรณีที่ a = b ลักษณะนี้ไม่เหมือนกับคู่ไม่อันดับ ซึ่งคู่ไม่อันดับ {a, b} เท่ากับคู่ไม่อันดับ {b, a}
คู่อันดับยังอาจมองเป็น ทูเพิล, เวกเตอร์ 2 มิติ หรือ ลำดับความยาว 2 ก็ได้ เนื่องจากคู่อันดับสามารถมีสมาชิกเป็นวัตถุทางคณิตศาสตร์ใด ๆ ก็ตาม สมาชิกของคู่อันดับก็อาจจะเป็นคู่อันดับด้วยเช่นกัน ทำให้สามารถนิยาม n สิ่งอันดับ โดยนิยามแบบเวียนเกิดได้ ตัวอย่างเช่น สามสิ่งอันดับ (a,b,c) สามารถนิยามโดย (a, (b,c)) หรือก็คือการนำคู่อันดับซ้อนกันไปเรื่อยๆ
ผลคูณคาร์ทีเซียน และ ความสัมพันธ์ทวิภาค (ซึ่งรวมถึงฟังก์ชัน) สามารถนิยามด้วยคู่อันดับได้ด้วยเช่นเดียวกัน
หลักโดยทั่วไป
กำหนดคู่อันดับ
และ
เป็นคู่อันดับใด ๆ คุณสมบัติของคู่อันดับคือ
ก็ต่อเมื่อ
และ ![{\displaystyle b_{1}=b_{2}.\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/8df4622ff7871fc4f6705a953c593d42a62c865e)
เซตของคู่อันดับทั้งหมดที่สมาชิกตัวหน้ามาจากเซต X และสมาชิกตัวหลังมาจากเซต Y เรียกว่าผลคูณคาร์ทีเซียนของ X และ Y หรืออาจเขียนเป็นสัญลักษณ์ได้ว่า X×Y ซึ่งความสัมพันธ์ทวิภาคจากเซต X ไปเซต Y ใด ๆ จะเป็นเซตย่อยของ X×Y
ในกรณีที่วงเล็บได้นำมาใช้เพื่อจุดประสงค์อื่นแล้ว เช่นใช้แทนช่วงเปิดบนเส้นจำนวน ก็อาจใช้สัญลักษณ์วงเล็บ
แทน
ตามปกติได้
การนิยามคู่อันดับโดยใช้ทฤษฎีเซต
เนื่องจากทฤษฎีเซตอาจถือได้ว่าเป็นรากฐานของคณิตศาสตร์ ดังนั้นวัตถุทางคณิตศาสตร์ใด ๆ ก็จะต้องสามารถนิยามภายใต้เซตได้ รวมถึงคู่อันดับด้วย[1] โดยได้มีนิยามหลากหลายรูปแบบในการนิยามคู่อันดับขึ้นมาจากเซต
นิยามของ Wiener
Norbert Wiener ได้เสนอนิยามคู่อันดับโดยใช้ทฤษฎีเซตเป็นคนแรกในปี 1914[2]
![{\displaystyle \left(a,b\right):=\left\{\left\{\left\{a\right\},\,\emptyset \right\},\,\left\{\left\{b\right\}\right\}\right\}.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/26302a77c94ef1c326e85755ee5b557373f723e3)
เขายังสังเกตว่าด้วยนิยามนี้สามารถนำไปใช้กับการนิยามประเภทให้อยู่ในรูปของเซตได้อีกด้วย
Wiener ใช้ {{b}} แทนที่ {b} เพื่อให้นิยามนี้เข้ากันได้กับทฤษฎีประเภท ซึ่งมีข้อกำหนดว่าสมาชิกทุกตัวในคลาสต้องเป็น "ประเภท" เดียวกัน หรือนั่นก็คือเพื่อทำให้
เป็นประเภทเดียวกันกับ
นิยามของ Hausdorff
ในเวลาใกล้เคียงกันกับการเสนอนิยามคู่อันดับของ Wiener ในปี 1914 Felix Hausdorff ก็ได้นำเสนอนิยามด้วยเช่นกัน
![{\displaystyle (a,b):=\left\{\{a,1\},\{b,2\}\right\}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e177babea88568f35c702ed8fd7ab6b6ef3d7329)
โดยที่ 1 และ 2 ต้องแตกต่างจาก a และ b[3]
นิยามของ Kuratowski
ในปี 1921 Kazimierz Kuratowski ได้เสนอนิยามคู่อันดับซึ่งปัจจุบันเป็นที่ยอมรับกันอย่างแพร่หลาย[4] ว่า
![{\displaystyle (a,\ b)_{K}\ :=\ \{\{a\},\ \{a,\ b\}\}.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/88f4828efc27cb051d4a24c18deaad2736bc138f)
มีการใช้นิยามนี้แม้ในกรณีที่สมาชิกตัวหน้ากับสมาชิกตัวหลังเหมือนกัน
![{\displaystyle (x,\ x)_{K}=\{\{x\},\{x,\ x\}\}=\{\{x\},\ \{x\}\}=\{\{x\}\}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/87d8190e7646244dc62bc59d43115a2628295f88)
เมื่อกำหนดคู่อันดับ p การทดสอบว่า x เป็นสมาชิกตัวหน้าของ p หรือไม่ สามารถหาได้จากค่าความจริงของ
![{\displaystyle \forall {Y}{\in }{p}:{x}{\in }{Y}.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/fed0f49e268f3081e3066529ff30c99b753d9912)
ในกรณีที่ต้องการทดสอบว่า x เป็นสมาชิกตัวหลังของ p หรือไม่ สามารถหาได้จากค่าความจริงของ
![{\displaystyle (\exists {Y}{\in }{p}:{x}{\in }{Y})\land (\forall {Y_{1},Y_{2}}{\in }{p}:Y_{1}\neq Y_{2}\rightarrow ({x}{\notin }{Y_{1}}\lor {x}{\notin }{Y_{2}})).}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c199e6675537198691a24a497a6fa22ef8643dda)
สังเกตว่าเงื่อนไขนี้สามารถใช้ได้ในกรณีที่สมาชิกตัวหน้าและสมาชิกตัวหลังเหมือนกันด้วย เพราะประพจน์เชื่อม (conjunct)
จะเป็นจริงเสมอจากการที่ Y1 ≠ Y2 ให้ค่าความจริงเป็นเท็จ ส่งผลให้เหลือแต่การทดสอบว่ามีสมาชิกตัวหลังในสมาชิกของเซตหรือไม่
หากต้องการจะนำค่าสมาชิกตัวหน้าออกมาจากคู่อันดับ p สามารถหาได้จาก
![{\displaystyle \pi _{1}(p)=\bigcup \bigcap p}](https://wikimedia.org/api/rest_v1/media/math/render/svg/89a777e7791e9e9452120f939afc5bb0cac1f5be)
และหากต้องการจะนำค่าสมาชิกตัวหลังออกมาจากคู่อันดับ p สามารถหาได้จาก
![{\displaystyle \pi _{2}(p)=\bigcup \{x\in \bigcup p\mid \bigcup p\not =\bigcap p\rightarrow x\notin \bigcap p\}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/61eaf7ddd4760e68af75f35bd5cdaf378b4db763)
อ้างอิง
- ↑ Quine has argued that the set-theoretical implementations of the concept of the ordered pair is a paradigm for the clarification of philosophical ideas (see "Word and Object", section 53).
The general notion of such definitions or implementations are discussed in Thomas Forster "Reasoning about theoretical entities".
- ↑ Wiener's paper "A Simplification of the logic of relations" is reprinted, together with a valuable commentary on pages 224ff in van Heijenoort, Jean (1967), From Frege to Gödel: A Source Book in Mathematical Logic, 1979-1931, Harvard University Press, Cambridge MA, ISBN 0-674-32449-8 (pbk.). van Heijenoort states the simplification this way: "By giving a definition of the ordered pair of two elements in terms of class operations, the note reduced the theory of relations to that of classes".
- ↑ cf introduction to Wiener's paper in van Heijenoort 1967:224
- ↑ cf introduction to Wiener's paper in van Heijenoort 1967:224. van Heijenoort observes that the resulting set that represents the ordered pair "has a type higher by 2 than the elements (when they are of the same type)"; he offers references that show how, under certain circumstances, the type can be reduced to 1 or 0.