Inom matematiken är Clausens funktion, introducerad av Thomas Clausen 1832, en speciell funktion. Den kan definieras som en integral, trigonometrisk serie, och med hjälp av andra speciella funktioner. Den är relaterad till polylogaritmen, inversa tangensintegralen, polygammafunktionen, Riemanns zetafunktion och Dirichlets betafunktion.
Clausens funktion av ordning 2 – som ofta kallas för Clausens funktion, fast den är en av Clausens funktioner – definieras som integralen
![{\displaystyle \operatorname {Cl} _{2}(\varphi )=-\int _{0}^{\varphi }\log {\Bigg |}2\sin {\frac {x}{2}}{\Bigg |}\,dx:}](https://wikimedia.org/api/rest_v1/media/math/render/svg/f02d4a92b9fbc712afa40402cb1e527a312e0383)
I intervallet
får sinus endast positiva värdet, så absoluta värdet kan lämnas bort. Clausens funktion har Fourierserien
![{\displaystyle \operatorname {Cl} _{2}(\varphi )=\sum _{k=1}^{\infty }{\frac {\sin k\varphi }{k^{2}}}=\sin \varphi +{\frac {\sin 2\varphi }{2^{2}}}+{\frac {\sin 3\varphi }{3^{2}}}+{\frac {\sin 4\varphi }{4^{2}}}+\,\cdots }](https://wikimedia.org/api/rest_v1/media/math/render/svg/080979dfe3fb644d110d9e6eaf23ea95af06edfc)
Allmän definition
Mer allmänt definieras följande två generaliserade Clausens funktioner:
![{\displaystyle \operatorname {S} _{z}(\theta )=\sum _{k=1}^{\infty }{\frac {\sin k\theta }{k^{z}}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/997d8d9d7c9e018ca84cb6096c4c0ac7d6a420cd)
![{\displaystyle \operatorname {C} _{z}(\theta )=\sum _{k=1}^{\infty }{\frac {\cos k\theta }{k^{z}}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/08faa192ced22f186374db389852ac8fcd39dc54)
som gäller för komplexa z med Re z >1.
Då z ersätts med ett icke-negativt heltal, definieras Clausens funktioner av standardtyp som serierna
![{\displaystyle \operatorname {Cl} _{2m+2}(\theta )=\sum _{k=1}^{\infty }{\frac {\sin k\theta }{k^{2m+2}}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/3a6e07ba148fbe8e550a65c6b2103f0e5bd27f42)
![{\displaystyle \operatorname {Cl} _{2m+1}(\theta )=\sum _{k=1}^{\infty }{\frac {\cos k\theta }{k^{2m+1}}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/ceae9af078756b19a53d9bdf9a4f52fef9c2bf54)
![{\displaystyle \operatorname {Sl} _{2m+2}(\theta )=\sum _{k=1}^{\infty }{\frac {\cos k\theta }{k^{2m+2}}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/5a97f5e16f679e9b1fa200a48b8f7e6f6ecf365d)
![{\displaystyle \operatorname {Sl} _{2m+1}(\theta )=\sum _{k=1}^{\infty }{\frac {\sin k\theta }{k^{2m+1}}}.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b51f5d7a12808bad12414cd438adb59f891f617a)
Derivator
![{\displaystyle {\frac {d}{d\theta }}\operatorname {Cl} _{2m+2}(\theta )={\frac {d}{d\theta }}\sum _{k=1}^{\infty }{\frac {\sin k\theta }{k^{2m+2}}}=\sum _{k=1}^{\infty }{\frac {\cos k\theta }{k^{2m+1}}}=\operatorname {Cl} _{2m+1}(\theta )}](https://wikimedia.org/api/rest_v1/media/math/render/svg/da5e3bd46c8fee69724d897572490f4a79885cad)
![{\displaystyle {\frac {d}{d\theta }}\operatorname {Cl} _{2m+1}(\theta )={\frac {d}{d\theta }}\sum _{k=1}^{\infty }{\frac {\cos k\theta }{k^{2m+1}}}=-\sum _{k=1}^{\infty }{\frac {\sin k\theta }{k^{2m}}}=-\operatorname {Cl} _{2m}(\theta )}](https://wikimedia.org/api/rest_v1/media/math/render/svg/021b323de837ed94ff80d6b442ec30f024ef3844)
![{\displaystyle {\frac {d}{d\theta }}\operatorname {Sl} _{2m+2}(\theta )={\frac {d}{d\theta }}\sum _{k=1}^{\infty }{\frac {\cos k\theta }{k^{2m+2}}}=-\sum _{k=1}^{\infty }{\frac {\sin k\theta }{k^{2m+1}}}=-\operatorname {Sl} _{2m+1}(\theta )}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d467c859243db4687b48b0c784f340cee26ac3af)
![{\displaystyle {\frac {d}{d\theta }}\operatorname {Sl} _{2m+1}(\theta )={\frac {d}{d\theta }}\sum _{k=1}^{\infty }{\frac {\sin k\theta }{k^{2m+1}}}=\sum _{k=1}^{\infty }{\frac {\cos k\theta }{k^{2m}}}=\operatorname {Sl} _{2m}(\theta )}](https://wikimedia.org/api/rest_v1/media/math/render/svg/49fbc72c4c36e31e60827dcbed4c1c06dd2ca86b)
Integraler
![{\displaystyle \int _{0}^{\theta }\operatorname {Cl} _{2m}(x)\,dx=\zeta (2m+1)-\operatorname {Cl} _{2m+1}(\theta )}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c2615f482de03d692bab64635dad6a9544c475fa)
![{\displaystyle \int _{0}^{\theta }\operatorname {Cl} _{2m+1}(x)\,dx=\operatorname {Cl} _{2m+2}(\theta )}](https://wikimedia.org/api/rest_v1/media/math/render/svg/a9107199b03671cd45f82e00e0899ed6c7b7f573)
![{\displaystyle \int _{0}^{\theta }\operatorname {Sl} _{2m}(x)\,dx=\operatorname {Sl} _{2m+1}(\theta )}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c0378f641cc509b81f12a3c085f7706d973e675d)
![{\displaystyle \int _{0}^{\theta }\operatorname {Sl} _{2m+1}(x)\,dx=\zeta (2m+2)-\operatorname {Cl} _{2m+2}(\theta )}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c8691a5b01fa4a06de30930ba84adde957ec6bf1)
Relation till inversa tangensintegralen
Inversa tangensintegralen definieras i intervallet
som
![{\displaystyle \operatorname {Ti} _{2}(z)=\int _{0}^{z}{\frac {\tan ^{-1}x}{x}}\,dx=\sum _{k=0}^{\infty }(-1)^{k}{\frac {z^{2k+1}}{(2k+1)^{2}}}.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/9b79fd799c5007ad89408964a72666f71ab86cd1)
Den kan skrivas i sluten form med hjälp av Clausens funktion:
![{\displaystyle \operatorname {Ti} _{2}(\tan \theta )=\theta \log(\tan \theta )+{\frac {1}{2}}\operatorname {Cl} _{2}(2\theta )+{\frac {1}{2}}\operatorname {Cl} _{2}(\pi -2\theta ).}](https://wikimedia.org/api/rest_v1/media/math/render/svg/3bcca78133d9b5d7123528fd2b7537f32ab1ab95)
Relation till Barnes G-funktion
För reella
kan Clausens funktion av andra ordningen skrivas med hjälp av Barnes G-funktion och gammafunktionen:
![{\displaystyle \operatorname {Cl} _{2}(2\pi z)=2\pi \log \left({\frac {G(1-z)}{G(1+z)}}\right)-2\pi \log \left({\frac {\sin \pi z}{\pi }}\right).}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e165c49c8c79800ba41df3e73ac8a25f806d8829)
Andra oändliga serier
En snabbare konvergerande serie för Clausens funktion är
![{\displaystyle {\frac {\operatorname {Cl} _{2}(\theta )}{\theta }}=1-\log |\theta |+\sum _{n=1}^{\infty }{\frac {\zeta (2n)}{n(2n+1)}}\left({\frac {\theta }{2\pi }}\right)^{2n}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/733c66764f9c688cbbf06324c6cc160408ab8e75)
som gäller för
, där
är Riemanns zetafunktion. En annan snabbt konvergerande serie är
![{\displaystyle {\frac {\operatorname {Cl} _{2}(\theta )}{\theta }}=3-\log \left[|\theta |\left(1-{\frac {\theta ^{2}}{4\pi ^{2}}}\right)\right]-{\frac {2\pi }{\theta }}\log \left({\frac {2\pi +\theta }{2\pi -\theta }}\right)+\sum _{n=1}^{\infty }{\frac {\zeta (2n)-1}{n(2n+1)}}\left({\frac {\theta }{2\pi }}\right)^{n}.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/eac6dcc1a3a780665b5b5731d1be0552f8e7046e)
Speciella värden
![{\displaystyle \operatorname {Cl} _{2}\left({\frac {\pi }{2}}\right)=G}](https://wikimedia.org/api/rest_v1/media/math/render/svg/bcc443c2e8a7de580d660ce23fc83dc15ea9d37e)
![{\displaystyle \operatorname {Cl} _{2}\left({\frac {\pi }{3}}\right)=3\pi \log \left({\frac {G\left({\frac {2}{3}}\right)}{G\left({\frac {1}{3}}\right)}}\right)-3\pi \log \Gamma \left({\frac {1}{3}}\right)+\pi \log \left({\frac {2\pi }{\sqrt {3}}}\right)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/f991f0f68aa759141571ca2c0e62c5ba32a6bef1)
![{\displaystyle \operatorname {Cl} _{2}\left({\frac {2\pi }{3}}\right)=2\pi \log \left({\frac {G\left({\frac {2}{3}}\right)}{G\left({\frac {1}{3}}\right)}}\right)-2\pi \log \Gamma \left({\frac {1}{3}}\right)+{\frac {2\pi }{3}}\log \left({\frac {2\pi }{\sqrt {3}}}\right)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b6c916b25a5e9b7cf11d6f64303684360d44d6ef)
![{\displaystyle \operatorname {Cl} _{2}\left({\frac {\pi }{4}}\right)=2\pi \log \left({\frac {G\left({\frac {7}{8}}\right)}{G\left({\frac {1}{8}}\right)}}\right)-2\pi \log \Gamma \left({\frac {1}{8}}\right)+{\frac {\pi }{4}}\log \left({\frac {2\pi }{\sqrt {2-{\sqrt {2}}}}}\right)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/9a2ba02a4fafa3e4eade499e63eb918aefd814aa)
![{\displaystyle \operatorname {Cl} _{2}\left({\frac {3\pi }{4}}\right)=2\pi \log \left({\frac {G\left({\frac {5}{8}}\right)}{G\left({\frac {3}{8}}\right)}}\right)-2\pi \log \Gamma \left({\frac {3}{8}}\right)+{\frac {3\pi }{4}}\log \left({\frac {2\pi }{\sqrt {2+{\sqrt {2}}}}}\right)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b3a3b4bab28620884955225c60aa4d997b3f32b9)
![{\displaystyle \operatorname {Cl} _{2}\left({\frac {\pi }{6}}\right)=2\pi \log \left({\frac {G\left({\frac {11}{12}}\right)}{G\left({\frac {1}{12}}\right)}}\right)-2\pi \log \Gamma \left({\frac {1}{12}}\right)+{\frac {\pi }{6}}\log \left({\frac {2\pi {\sqrt {2}}}{{\sqrt {3}}-1}}\right)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/a82db7cd0eae19312ed050f0363966fdd5087af2)
![{\displaystyle \operatorname {Cl} _{2}\left({\frac {5\pi }{6}}\right)=2\pi \log \left({\frac {G\left({\frac {7}{12}}\right)}{G\left({\frac {5}{12}}\right)}}\right)-2\pi \log \Gamma \left({\frac {5}{12}}\right)+{\frac {5\pi }{6}}\log \left({\frac {2\pi {\sqrt {2}}}{{\sqrt {3}}+1}}\right)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/1cc767cdcbb7e3b9a31dfd9525adcb7709e6829e)
Speciella värden av högre ordningens funktioner
Några speciella värden av Clausens funktioner av högre ordning är
![{\displaystyle \operatorname {Cl} _{2m}\left(0\right)=\operatorname {Cl} _{2m}\left(\pi \right)=\operatorname {Cl} _{2m}\left(2\pi \right)=0}](https://wikimedia.org/api/rest_v1/media/math/render/svg/f121af584c5e43a8829d67feae175b3402d045a6)
![{\displaystyle \operatorname {Cl} _{2m}\left({\frac {\pi }{2}}\right)=\beta (2m)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b60b53752d6bc2e444ce227ce243f8f0d4b941a3)
![{\displaystyle \operatorname {Cl} _{2m+1}\left(0\right)=\operatorname {Cl} _{2m+1}\left(2\pi \right)=\zeta (2m+1)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/678dd134a101c6f0612cde4bf411529c123d0987)
![{\displaystyle \operatorname {Cl} _{2m+1}\left(\pi \right)=-\eta (2m+1)=-\left({\frac {2^{2m}-1}{2^{2m}}}\right)\zeta (2m+1)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/29d4d89fbc888807dfda81272b60e45bffa01764)
![{\displaystyle \operatorname {Cl} _{2m+1}\left({\frac {\pi }{2}}\right)=-{\frac {1}{2^{2m+1}}}\eta (2m+1)=-\left({\frac {2^{2m}-1}{2^{4m+1}}}\right)\zeta (2m+1)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/044738ad64db981cd61321272e5f87e4a06affd7)
där
är Catalans konstant,
är Dirichlets betafunktion,
är Dirichlets etafunktion och
är Riemanns zetafunktion.
Källor
- Den här artikeln är helt eller delvis baserad på material från engelskspråkiga Wikipedia, Clausen function, 19 december 2013.
- Abramowitz, Milton; Stegun, Irene A., reds. (1965), ”Chapter 27.8”, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, New York: Dover, s. 1005, ISBN 978-0486612720
- Adamchik, Viktor. S.. ”Contributions to the Theory of the Barnes Function”. https://arxiv.org/abs/math/0308086v1.
- Clausen, Thomas (1832). ”Über die Function sin φ + (1/22) sin 2φ + (1/32) sin 3φ + etc.”. Journal für die reine und angewandte Mathematik 8: sid. 298–300. ISSN 0075-4102. http://resolver.sub.uni-goettingen.de/purl?PPN243919689_0008.
- Wood, Van E. (1968). ”Efficient calculation of Clausen's integral”. Math. Comp. 22 (104): sid. 883–884. doi:10.1090/S0025-5718-1968-0239733-9.
- Leonard Lewin, (Ed.). Structural Properties of Polylogarithms (1991) American Mathematical Society, Providence, RI. ISBN 0-8218-4532-2
- Kölbig, Kurt Siegfried (1995). ”Chebyshev coefficients for the Clausen function Cl2(x)”. J. Comput. Appl. Math. 64 (3): sid. 295–297. doi:10.1016/0377-0427(95)00150-6.
- Borwein, Jonathan M.; Straub, Armin. ”Relations for Nielsen Polylogarithms”. Arkiverad från originalet den 12 december 2013. https://web.archive.org/web/20131212084540/http://www.thecarma.net/jon/nielsenrelations.pdf.
- Borwein, Jonathan M.; Bradley, David M.; Crandall, Richard E. (2000). ”Computational Strategies for the Riemann Zeta Function”. J. Comp. App. Math. 121: sid. 247–296. http://www.maths.ex.ac.uk/~mwatkins/zeta/borwein1.pdf.
- Kalmykov, Mikahil Yu.; Sheplyakov, A. (2005). ”LSJK - a C++ library for arbitrary-precision numeric evaluation of the generalized log-sine integral”. Comput. Phys. Comm. 172: sid. 45–59. doi:10.1016/j.cpc.2005.04.013. https://arxiv.org/abs/hep-ph/0411100.
- Mathar, R. J.. ”A C99 implementation of the Clausen sums”. https://arxiv.org/abs/1309.7504.
- Lu, Hung Jung; Perez, Christopher A. (1992). ”Massless one-loop scalar three-point integral and associated Clausen, Glaisher, and L-functions”. http://www.slac.stanford.edu/cgi-wrap/getdoc/slac-pub-5809.pdf.
Externa länkar