Inom matematiken är Polylogaritmen en speciell funktion som definieras som
![{\displaystyle \operatorname {Li} _{s}(z)=\sum _{k=1}^{\infty }{z^{k} \over k^{s}}=z+{z^{2} \over 2^{s}}+{z^{3} \over 3^{s}}+\cdots \,.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/8a12d0641a3c7231d50d2d416198e2e7dfef6527)
Speciella värden
1. Då s är ett negativt heltal är polylogaritmen en rationell funktion av z:
![{\displaystyle \operatorname {Li} _{1}(z)=-\ln(1-z)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/48510af4a60aabf4cf96e3efe5decfa77d51acf5)
![{\displaystyle \operatorname {Li} _{0}(z)={z \over 1-z}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/6cb0fd3fec95caf1b1de48376543bb91865fcd4d)
![{\displaystyle \operatorname {Li} _{-1}(z)={z \over (1-z)^{2}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/5c3202e3ecc4d589eff7b77e6e8c623a58e0d289)
![{\displaystyle \operatorname {Li} _{-2}(z)={z\,(1+z) \over (1-z)^{3}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/5136ba8ba11279a833b36c381b24b96507a64512)
![{\displaystyle \operatorname {Li} _{-3}(z)={z\,(1+4z+z^{2}) \over (1-z)^{4}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/518e953c37eeeb25c5545a1d35c9774f6b419065)
![{\displaystyle \operatorname {Li} _{-4}(z)={z\,(1+z)(1+10z+z^{2}) \over (1-z)^{5}}\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/f59c05a1163ade2fa058acda9e56ee6e63ee8efb)
och i allmänhet
![{\displaystyle \operatorname {Li} _{-n}(z)=\left(z\,{\partial \over \partial z}\right)^{n}{z \over {1-z}}=}](https://wikimedia.org/api/rest_v1/media/math/render/svg/2a53a0fc97243a3ef50ee6c23d08a5778a2ca465)
![{\displaystyle =\sum _{k=0}^{n}k!\,S(n\!+\!1,\,k\!+\!1)\left({z \over {1-z}}\right)^{k+1}\qquad (n=0,1,2,\ldots )\,,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/db5b43a443d4389c163c3bffd64055a79ef5183b)
där S(n,k) är Stirlingtalen av andra ordningen .
2.
![{\displaystyle \operatorname {Li} _{1}({\tfrac {1}{2}})=\ln 2}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c960f8e96280f7c2ada2dedd56cd2c17c2a8a7e1)
![{\displaystyle \operatorname {Li} _{2}({\tfrac {1}{2}})={\tfrac {1}{12}}\pi ^{2}-{\tfrac {1}{2}}(\ln 2)^{2}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/3892fac2fe5808d30a800da934fb40c4aa896c26)
![{\displaystyle \operatorname {Li} _{3}({\tfrac {1}{2}})={\tfrac {1}{6}}(\ln 2)^{3}-{\tfrac {1}{12}}\pi ^{2}\ln 2+{\tfrac {7}{8}}\,\zeta (3)\,,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e53468370e175d3ce202ed0438872847786dddf6)
där ζ är Riemanns zetafunktion. Inga liknande formler är kända för högre ordningar, men några något mer komplicerade formler är
![{\displaystyle \operatorname {Li} _{4}({\tfrac {1}{2}})={\tfrac {1}{360}}\pi ^{4}-{\tfrac {1}{24}}(\ln 2)^{4}+{\tfrac {1}{24}}\pi ^{2}(\ln 2)^{2}-{\tfrac {1}{2}}\,\zeta ({\bar {3}},{\bar {1}})\,,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c904103ddf4fd1016343b9e42df6edbe81fc56df)
som innehåller den alternerande dubbelsumman . I allmänhet gäller för heltal n ≥ 2
![{\displaystyle \operatorname {Li} _{n}({\tfrac {1}{2}})=-\zeta ({\bar {1}},{\bar {1}},\left\{1\right\}^{n-2})\,,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/da99d9c55efffaa195a5f63bd74df3733e9ea5f8)
där ζ(s1, ..., sk) är multipel-zetafunktionen, exempelvis
![{\displaystyle \operatorname {Li} _{5}({\tfrac {1}{2}})=-\zeta ({\bar {1}},{\bar {1}},1,1,1)\,.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/ab611e2e818488d278a6c350153242e75b3d9c38)
3. Direkt ur polylogaritmens definition följer att
![{\displaystyle \operatorname {Li} _{s}(e^{2\pi im/p})=p^{-s}\sum _{k=1}^{p}e^{2\pi imk/p}\,\zeta (s,{\tfrac {k}{p}})\qquad (m=1,2,\dots ,p-1)\,,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/ed483edc3d0fec7af9c8719f48602e90be503ebe)
där ζ är Hurwitzs zetafunktion.
Integralrepresentationer
För alla komplexa s och z gäller
![{\displaystyle \operatorname {Li} _{s}(z)={\tfrac {1}{2}}z+{\Gamma (1\!-\!s,-\ln z) \over (-\ln z)^{1-s}}+2z\int _{0}^{\infty }{\frac {\sin(s\arctan t\,-\,t\ln z)}{(1+t^{2})^{s/2}\,(e^{2\pi t}-1)}}\,\mathrm {d} t.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/1af0e3a59bf2f691f6c37f11fe60ca75aeca660d)
Relation till andra funktioner
![{\displaystyle \operatorname {Li} _{s}(1)=\zeta (s)\qquad ({\textrm {Re}}(s)>1)\,.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/2f9a0cc7ea004f5610e0105cd1568ebe6bc4eb08)
![{\displaystyle \operatorname {Li} _{s}(-1)=-\eta (s)\,,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/a5900a6c6ce2cb7db65c6e0c035b9b6e09cf8518)
- och
![{\displaystyle \operatorname {Li} _{s}(\pm i)=-2^{-s}\,\eta (s)\pm i\,\beta (s)\,.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/8e9102da04b6b521ab27783a8009942e45431900)
![{\displaystyle \operatorname {Li} _{s}(z)=\operatorname {Li} _{s}(0,z)\,.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/313905941423209dad3f57255123bffc1b628315)
![{\displaystyle \operatorname {Li} _{s}(z)=z\,\Phi (z,s,1)\,.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/1acb0657ac19cbdd842f55a1434af96bc63abee2)
![{\displaystyle \operatorname {Li} _{s}(z)={\Gamma (1\!-\!s) \over (2\pi )^{1-s}}\left[i^{1-s}~\zeta \!\left(1\!-\!s,~{\frac {1}{2}}+{\ln(-z) \over {2\pi i}}\right)+i^{s-1}~\zeta \!\left(1\!-\!s,~{\frac {1}{2}}-{\ln(-z) \over {2\pi i}}\right)\right],}](https://wikimedia.org/api/rest_v1/media/math/render/svg/eb1a8189fbe6e2b8c17eae8523783b250dac11e7)
utom då s=0,1,2,...
![{\displaystyle \operatorname {Li} _{n}(e^{2\pi ix})+(-1)^{n}\,\operatorname {Li} _{n}(e^{-2\pi ix})=-{(2\pi i)^{n} \over n!}\,B_{n}(x)\,,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/2ba20cc434f3730b1161f7a9651c6aac167338aa)
där 0 ≤ Re(x) < 1 om Im(x) ≥ 0, och 0 < Re(x) ≤ 1 om Im(x) < 0.
![{\displaystyle \chi _{s}(z)={\tfrac {1}{2}}\left[\operatorname {Li} _{s}(z)-\operatorname {Li} _{s}(-z)\right].}](https://wikimedia.org/api/rest_v1/media/math/render/svg/93c1910b88b64db413955b6a0834fa3e4ab4dcc5)
![{\displaystyle \operatorname {Li} _{n}(z)=z\;_{n+1}F_{n}(1,1,\dots ,1;\,2,2,\dots ,2;\,z)\qquad (n=0,1,2,\ldots )~}](https://wikimedia.org/api/rest_v1/media/math/render/svg/62ba2d27aade1b713a19e348e6922694f42c5ceb)
![{\displaystyle \operatorname {Li} _{-n}(z)=z\;_{n}F_{n-1}(2,2,\dots ,2;\,1,1,\dots ,1;\,z)\qquad (n=1,2,3,\ldots )~.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e7823edf24d0c6f6c790f80b97d92d24bb23caed)
![{\displaystyle Ti_{s}(z)={1 \over 2i}\left[\operatorname {Li} _{s}(iz)-\operatorname {Li} _{s}(-iz)\right].}](https://wikimedia.org/api/rest_v1/media/math/render/svg/86a7429ff72c8c898e67cdd1fc61afd964a70211)
- Av det här följer:
![{\displaystyle Ti_{0}(z)={z \over 1+z^{2}},\quad Ti_{1}(z)=\arctan z,\quad Ti_{2}(z)=\int _{0}^{z}{\arctan t \over t}\,\mathrm {d} t,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/3981cf06372dd96a1f852749b73753021de6d3e1)
![{\displaystyle \quad \ldots ~,\quad Ti_{n+1}(z)=\int _{0}^{z}{Ti_{n}(t) \over t}\,\mathrm {d} t\,.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/41e5e07ff81dd22750bb9b47c2fffb251008fe85)
Gränsvärden
![{\displaystyle \lim _{|z|\rightarrow 0}\operatorname {Li} _{s}(z)=z}](https://wikimedia.org/api/rest_v1/media/math/render/svg/99db7bcc9c685d025f94b75c8c82de7719244d63)
![{\displaystyle \lim _{|\mu |\rightarrow 0}\operatorname {Li} _{s}(e^{\mu })=\Gamma (1\!-\!s)\,(-\mu )^{s-1}\qquad (\mathrm {Re} (s)<1)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/49ff9f5be3b5397fcb5b1df1c093a9d0b12e3f56)
![{\displaystyle \lim _{\mathrm {Re} (\mu )\rightarrow \infty }\operatorname {Li} _{s}(-e^{\mu })=-{\mu ^{s} \over \Gamma (s+1)}\qquad (s\neq -1,-2,-3,\ldots )}](https://wikimedia.org/api/rest_v1/media/math/render/svg/ff0a2ef07bb867d8c5151b597400d0a1905bdf6a)
![{\displaystyle \lim _{\mathrm {Re} (\mu )\rightarrow \infty }\operatorname {Li} _{-n}(e^{\mu })=-(-1)^{n}\,e^{-\mu }\qquad (n=1,2,3,\ldots )}](https://wikimedia.org/api/rest_v1/media/math/render/svg/021b637ac68892976d59ab968794680609b29d67)
![{\displaystyle \lim _{\mathrm {Re} (s)\rightarrow \infty }\operatorname {Li} _{s}(z)=z}](https://wikimedia.org/api/rest_v1/media/math/render/svg/f6cc6f875e523e2f209b9116a7e41f434f4c0ebf)
![{\displaystyle \lim _{\mathrm {Re} (s)\rightarrow -\infty }\operatorname {Li} _{s}(e^{\mu })=\Gamma (1\!-\!s)\,(-\mu )^{s-1}\qquad (-\pi <\mathrm {Im} (\mu )<\pi )}](https://wikimedia.org/api/rest_v1/media/math/render/svg/f5ebbd39900cf1a2854f1ac153a7e0cc10330e56)
![{\displaystyle \lim _{\mathrm {Re} (s)\rightarrow -\infty }\operatorname {Li} _{s}(-e^{\mu })=\Gamma (1\!-\!s)\left[(-\mu -i\pi )^{s-1}+(-\mu +i\pi )^{s-1}\right]\qquad (\mathrm {Im} (\mu )=0)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/75c7bbf4419f849cab2c58d5a1a23647d30ec23e)
Övrigt
Definiera . Då gäller
![{\displaystyle \operatorname {Li} _{2}(\rho ^{6})=4\operatorname {Li} _{2}(\rho ^{3})+3\operatorname {Li} _{2}(\rho ^{2})-6\operatorname {Li} _{2}(\rho )+{\tfrac {7}{30}}\pi ^{2}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/1e018bc0439e625873374ee2e1500d81d6bdfcf0)
och
![{\displaystyle \operatorname {Li} _{2}(\rho )={\tfrac {1}{10}}\pi ^{2}-\ln ^{2}\rho .}](https://wikimedia.org/api/rest_v1/media/math/render/svg/a452a4235dd3ceb1a99eae1c6ce07dd949db4689)
Källor
- Den här artikeln är helt eller delvis baserad på material från engelskspråkiga Wikipedia, Polylogarithm, 4 november 2013.
Externa länkar
|