C-группаC-группа — это группа, в которой централизатор любой свёртки имеет нормальную силовскую 2-подгруппу. Этот класс включает в качестве специальных случаев CIT-группы, в которых централизатор любой свёртки является 2-группой, и TI-группы, в которых любые силовские 2-подгруппы имеют тривиальное пересечение. Простые C-группы определил Сузуки[1], а его классификацию подытожил Горенштейн [2]. Классификация C-групп использовалась в Томпсоновской классификации N-групп. Простыми C-группами являются
CIT-группыC-группы включают в качестве специальных случаев CIT-группы, в которых централизатор любой свёртки является 2-группой. Эти группы классифицировал Сузуки[3][4] и простые группы этого класса являются C-группами, отличными от PU3(q) и PSL3(q). Группы, силовские 2-подгруппы которых являются элементарными абелевыми, были классифицированы в статье Бёрнсайда[5], которая была на многие годы забыта, пока её не обнаружил в 1970 году Фейт. TI-группыC-группы включают в качестве специальных случаев TI-группы (группы тривиальных пересечений), которые являются группами, в которых любые две силовские 2-подгруппы имеют тривиальное пересечение. Группы классифицировал Сузуки[6], а простые группы этого класса являются группами PSL2(q), PU3(q), Sz(q) для q, равного степени 2. Примечания
Литература
|
Portal di Ensiklopedia Dunia