Фуксова особая точкаВ теории дифференциальных уравнений с комплексным временем, точка называется фуксовой особой точкой линейного дифференциального уравнения если матрица системы A(t) имеет в ней полюс первого порядка. Это — простейшая возможная особенность линейного дифференциального уравнения с комплексным временем. Говорят также, что является фуксовой особой точкой, если точка оказывается фуксовой после замены , иными словами, если матрица системы стремится к нулю на бесконечности.
Простейший примерОдномерное дифференциальное уравнение имеет фуксову особую точку в нуле, а его решениями являются (вообще говоря, многозначные) функции . При обходе вокруг нуля решение при этом умножается на . Рост решений и отображение монодромииПри приближении к фуксовой особой точке в любом секторе норма решения растёт не быстрее, чем полиномиально: для некоторых констант и . Тем самым, всякая фуксова особая точка является регулярной.
Нормальная форма Пуанкаре-Дюлака-Левелля
21-я проблема ГильбертаДвадцать первая проблема Гильберта состояла в том, чтобы при заданных точках на сфере Римана и представлении фундаментальной группы дополнения к ним построить систему дифференциальных уравнений с фуксовыми особенностями в этих точках, для которой монодромия оказывается заданным представлением. Долгое время считалось, что эта проблема была положительно решена Племелем (опубликовавшим решение в 1908 году), однако в его решении в 1970-х годах Ю. С. Ильяшенко была обнаружена ошибка. На самом деле, конструкция Племеля позволяла строить требуемую систему при диагонализуемости хотя бы одной из матриц монодромии.[1] В 1989 году А. А. Болибрухом был опубликован[2] пример набора особых точек и матриц монодромии, который не может быть реализован никакой фуксовой системой — тем самым, отрицательно решающий проблему. Литература
|