Формула ПлюккераФормула Плюккера — одна из семейства формул, выведенных немецким математиком и физиком Плюккером в 1830-х годах. Формулы связывают некоторые инварианты алгебраических кривых и инварианты дуальных им кривых. Инвариант, называемый родом и являющийся общим как для кривой, так и для дуальной ей кривой, связан с другими инвариантами похожими формулами. Эти формулы и тот факт, что каждый из этих инвариантов должен быть положительным целым числом, накладывают строгие ограничения на возможные значения инвариантов. Инварианты Плюккера и базовые уравненияКривая в этом контексте задаётся невырожденным алгебраическим уравнением в комплексной проективной плоскости. Прямые в этой плоскости соответствуют точкам дуальной проективной плоскости, а прямые, касательные к данной алгебраической кривой C, соответствуют точкам на алгебраической кривой C*, называемой дуальной кривой. Точки же кривой C соответствуют прямым, касательным к C*, так что дуальной кривой для C* будет C. Первые два инварианта, участвующие в формулах Плюккера — это степень d кривой C и степень d*, называемая классом кривой C. Геометрически d — это число точек пересечения произвольной прямой и C, включая комплексные точки и бесконечно удалённые точки с учётом кратности. Класс d* — это число касательных к C, проходящих через произвольную точку плоскости. Например, коническое сечение имеет и степень, и класс 2. Если у кривой C нет особых точек, первая формула Плюккера утверждает, что но для кривых с особыми точками формулу нужно подправить. Пусть δ — число обыкновенных двойных точек кривой C, то есть имеющих различные касательные (такие точки называются точками самопересечения[англ.]) или изолированных, а κ — число каспов, то есть точек, имеющих единственную касательную. Если кривая C имеет особенности более высокой степени, то они рассматриваются как несколько особых точек, согласно анализу природы особенности. Например, обыкновенная тройная точка считается как три двойных точки. Опять же, мнимые точки и точки на бесконечности также учитываются. Уточнённая форма первого равенства Плюккера имеет вид Подобным образом, пусть δ* — число обыкновенных двойных точек, а κ* — число каспов кривой C*. Вторая формула Плюккера утверждает, что Геометрически обыкновенная двойная точка кривой C* — прямая, касающаяся кривой в двух точках (бикасательная), а касп кривой C* — точка перегиба. Первые два уравнения Плюккера имеют двойственные версии: Эти четыре равенства, фактически, не являются независимыми, так что любые три могут быть использованы для вывода четвёртого. Если заданы любые три из шести инвариантов d, d*, δ, δ*, κ и κ*, то остальные три можно по ним вычислить. Наконец, геометрический род кривой C можно определить по формуле Это равенство эквивалентно двойственному
Всего мы имеем четыре независимых уравнения с семью неизвестными, и при задании трёх неизвестных остальные четыре могут быть вычислены. Кривые без особых точекВажный частный случай — когда кривая C не имеет особых точек, то есть δ и κ равны 0, так что оставшиеся инварианты можно вычислить в терминах исключительно d: Так, например, плоская квартика без особых точек имеет род 3, имеет 28 бикасательных и 24 точки перегиба. Типы кривыхКривые классифицируются по типам согласно их инвариантам Плюккера. Уравнения Плюккера вместе с тем ограничением, что инварианты должны быть натуральными числами, сильно ограничивают число возможных типов кривых заданной степени. Проективно эквивалентные кривые должны иметь тот же тип, но кривые одного и того же типа, вообще говоря, не эквивалентны проективно. Кривые степени 2 — конические сечения — имеют единственный тип, задаваемый равенствами d=d*=2, δ=δ*=κ=κ*=g=0. Для кривых степени 3 возможны три типа с инвариантами[1]
Кривые типов (ii) и (iii) — это рациональные кубические кривые, с обыкновенной двойной точкой и каспом соответственно. Кривые типа (i) не имеют особых точек (эллиптические кривые). Для кривых степени 4 существует 10 возможных типов с инвариантами[2]
ПримечанияСсылки
|
Portal di Ensiklopedia Dunia