Тензорное произведение линейных пространств и есть линейное пространство, обозначаемое .
Для элементов и их тензорное произведение лежит в пространстве .
Обозначение тензорного произведения произошло по аналогии с обозначением для декартова произведения множеств.
Тензорное произведение линейных (векторных) пространств
Конечномерные пространства
Пусть и — конечномерные векторные пространства над полем, — базис в , — базис в . Тензорным произведением пространств и будем называть векторное пространство, порождённое элементами , называемыми тензорными произведениями базисных векторов. Тензорное произведение произвольных векторов можно определить, полагая операцию билинейной:
При этом тензорное произведение произвольных векторов и выражается как линейная комбинация базисных векторов . Элементы в , представимые в виде , называются разложимыми.
Хотя тензорное произведение пространств определяется через выбор базисов, его геометрические свойства не зависят от этого выбора.
Тензорное произведение — это в некотором смысле наиболее общее пространство, в которое можно билинейно отобразить исходные пространства. А именно, для любого другого пространства и билинейного отображения существует единственное линейное отображение такое, что
В частности, отсюда следует, что тензорное произведение не зависит от выбора базисов в и , так как все удовлетворяющие универсальному свойству пространства оказываются канонически изоморфны.
Таким образом, задание произвольного билинейного отображения эквивалентно заданию линейного отображения : пространства и являются канонически изоморфными.
Произведение более чем двух пространств
Приведенное универсальное свойство может быть продолжено на произведения более чем двух пространств. Например, пусть , , и — три векторных пространства. Тензорное произведение вместе с трилинейным отображением из прямого произведения
имеет такой вид, что любое трилинейное отображение из прямого произведения в векторное пространство
единственным образом пропускается через тензорное произведение:
где — линейное отображение. Тензорное произведение характеризуется этим свойством однозначно, с точностью до изоморфизма. Результат приведенной конструкции совпадает с повторением тензорного произведения двух пространств. Например, если , и — три векторных пространства, то существует (естественный) изоморфизм
В общем случае тензорное произведение произвольного индексированного семейства множеств , определяется как универсальный объект для полилинейных отображений из прямого произведения .
Пусть — произвольное натуральное число. Тогда -й тензорной степенью пространства называется тензорное произведение копий :
Функториальность
Тензорное произведение действует также на линейных отображениях. Пусть , — линейные операторы. Тензорное произведение операторов определяется по правилу
После этого определения тензорное произведение становится бифунктором из категории векторных пространств в себя, ковариантным по обоим аргументам.[1]
Если матрицы операторов A и B при некотором выборе базисов имеют вид
то матрица их тензорного произведения запишется в базисе, образованном тензорным произведением базисов, в виде блочной матрицы
Пусть — модули над некоторым коммутативным кольцом. Тензорным произведением модулей называется модуль над , данный вместе с полилинейным отображением и обладающий свойством универсальности, то есть такой, что для всякого модуля над и любого полилинейного отображения существует единственный гомоморфизм модулей такой, что диаграмма
коммутативна. Тензорное произведение обозначается . Из универсальности тензорного произведения следует, что оно определено однозначно с точностью до изоморфизма.
Для доказательства существования тензорного произведения любых модулей над коммутативным кольцом построим свободный модуль , образующими которого будут n-ки элементов модулей где . Пусть — подмодуль , порождаемый следующими элементами:
Тензорное произведение определяется как фактормодуль , класс обозначается , и называется тензорным произведением элементов , a определяется как соответствующее индуцированное отображение.
Из 1) и 2) следует что отображение полилинейно. Докажем, что для любого модуля и любого полилинейного отображения существует единственный гомоморфизм модулей , такой, что .
В самом деле, так как свободен, то существует единственное отображение , делающее диаграмму
коммутативной, а в силу того, что полилинейно, то на , отсюда, переходя к индуцированному отображению, получаем, что , будет тем самым единственным гомоморфизмом, существование которого и требовалось доказать.
Элементы , представимые в виде , называются разложимыми.
Если — изоморфизмы модулей, то индуцированный гомоморфизм, соответствующий билинейному отображению
существующий по свойству универсальности, называется тензорным произведением гомоморфизмов .
Особенно простой случай получается в случае свободных модулей. Пусть — базис модуля . Построим свободный модуль над нашим кольцом, имеющий в качестве базиса элементы, соответствующие n-кам , определив отображение и распространив его на по линейности. Тогда является тензорным произведением, где является тензорным произведением элементов . Если число модулей и все их базисы конечны, то
↑Hazewinkel, Michiel; Gubareni, Nadezhda Mikhaĭlovna; Gubareni, Nadiya; Kirichenko, Vladimir V. Algebras, rings and modules (неопр.). — Springer, 2004. — С. 100. — ISBN 978-1-4020-2690-4.