Сферическая теорема ПифагораСферическая теорема Пифагора — теорема, устанавливающая соотношение между сторонами прямоугольного сферического треугольника. Формулировка и доказательствоСферическая теорема Пифагора формулируется следующим образом[1]:
Доказательство проведём с помощью трёхгранного угла[1] OA1B1C1 со сторонами (лучами) OA1, OB1, OC1 и вершиной в точке O, плоские углы A1OC1 и C1OB1 которого равны катетам b и a данного треугольника, плоский угол A1OB1 равен его гипотенузе c, двугранный угол между гранями A1OC1 и C1OB1 равен 90 градусов, а остальные два двугранных угла равны соответствующим углам сферического прямоугольного треугольника. Этот трёхгранный угол пересечен плоскостью A1B1C1, перпендикулярной лучу OB1. Тогда углы A1C1O и A1C1B1 будут прямыми. Заметим, что Отсюда Что и требовалось доказать. Если считать, что сферическая теорема косинусов уже доказана, формулу для сферической теоремы Пифагора можно сразу получить из неё, записав сферическую теорему косинусов для гипотенузы данного прямоугольного сферического треугольника и просто подставив в получившееся выражение угол 90 градусов, косинус которого равен нулю. Следствия и применениеПри радиусе сферы, стремящемся к бесконечности, сферическая теорема Пифагора переходит в теорему Пифагора планиметрии. Поэтому, поскольку радиус Земли велик, при небольших расстояниях прямоугольные треугольники на поверхности Земли (например, используемые для измерения расстояний и углов на местности) практически подчиняются теореме Пифагора планиметрии[2], тогда как для больших расстояний, сравнимых с радиусом Земли, уже необходимо применять сферическую теорему Пифагора. С применением сферической теоремы Пифагора можно получить формулы для разности долгот и расстояния между точками земной поверхности, а, следовательно, и соответствующие формулы для расстояний и координат точек на небесной сфере. Из сферической теоремы Пифагора следует, что в прямоугольном сферическом треугольнике количество сторон, меньших 90 градусов, нечётно, а больших — чётно[1]. Поэтому если оба катета прямоугольного сферического треугольника больше 90 градусов, то его гипотенуза меньше 90 градусов, то есть в этом случае гипотенуза короче каждого из двух катетов — положение, невозможное для прямоугольного треугольника на плоскости. ИсторияСферическая теорема Пифагора была известна ещё Ал-Бируни, который вместе с тем не знал сферической теоремы косинусов, поэтому применил сферическую теорему Пифагора и теорему синусов для решения как минимум двух задач: определения разности долгот двух пунктов на поверхности Земли по их широтам и расстоянию между ними и определения расстояния между двумя пунктами на поверхности Земли по их широтам и долготам[3]:81. См. такжеПримечания
|
Portal di Ensiklopedia Dunia