Робастное управлениеРобастность [англ. robust < лат. robuste — прочно, крепко] означает малое изменение выхода замкнутой системы управления при малом изменении параметров объекта управления (или просто устойчивость к помехам). Роба́стное управле́ние — совокупность методов теории управления, целью которых является синтез такого регулятора, который обеспечивал бы хорошее качество управления (к примеру, запасы устойчивости), если объект управления отличается от расчётного или его математическая модель неизвестна. Изменение тех или иных свойств системы, в частности, изменение её запаса устойчивости, вызванное вариациями её параметров, называется чувствительностью системы. Системы, сохраняющие при всех возможных вариациях параметров необходимый запас устойчивости, получили название робастных. Обычно робастные контроллеры применяются для управления объектами с неизвестной или неполной математической моделью и объектами с неопределённостями.[1] Для проектирования робастных систем управления используются различные методы оптимального и робастного синтеза, среди которых синтез контроллеров в пространствах H∞ и H2, ЛМН-контроллеры, μ-контроллеры. Задача робастного управленияГлавной задачей синтеза робастных систем управления является поиск закона управления, который сохранял бы выходные переменные системы и сигналы ошибки в заданных допустимых пределах несмотря на наличие неопределённостей в контуре управления. Неопределённости могут принимать любые формы, однако наиболее существенными являются шумы, нелинейности и неточности в знании передаточной функции объекта управления. Общая каноническая задача робастного управления математически описывается в следующем виде: Пусть передаточная функция объекта управления — . Необходимо синтезировать такой контроллер с передаточной функцией , чтобы передаточная функция замкнутой системы удовлетворяла следующему неравенству, которое называется критерием робастности: где
можно рассматривать как «размер» наименьшей неопределённости на каждой частоте, которая может сделать систему неустойчивой. Для того, чтобы внести в робастный синтез требования по качеству управления, используется фиктивная неопределённость . При её отсутствии задача является задачей обеспечения робастной устойчивости. В робастном анализе требуется найти как границу устойчивости, в робастном же синтезе требуется определить передаточную функцию контроллера для соответствия критерию робастности. Структурные и неструктурные неопределённости![]() В робастном управлении рассматриваются два вида неопределённостей — структурные и неструктурные. Неструктурные неопределённости обычно представляют собой элементы, зависящие от частоты, такие как, например, насыщение в силовых приводах или возмущения в низкочастотной области АФЧХ объекта управления. Воздействие неструктурных неопределённостей на номинальный объект управления может быть как аддитивным так и мультипликативным Структурные неопределённости представляют собой изменения в динамике объекта управления, к примеру:
Общий подход, сформулированный в канонической задаче робастного управления, позволяет выявить на этапе проектирования как структурные, так и неструктурные неопределённости и использовать их в процессе синтеза робастного контроллера. Робастный анализ![]() Целью робастного анализа является поиск такой неопределённости , при которой система становится неустойчивой. В ходе анализа решаются две задачи:
По теореме о робастной устойчивости система устойчива при любых , удовлетворяющих неравенству
Робастный синтезЦелью робастного синтеза является проектирование такого контроллера, который бы удовлетворял критерию робастности. Начиная с 50-х годов XX века был разработан ряд процедур и алгоритмов, позволяющих решить задачу робастного синтеза. Робастные системы управления могут сочетать черты как классического управления, так и адаптивного и нечёткого. Ниже представлены основные технологии синтеза робастных систем управления:
См. такжеПримечания
Литература
Ссылки |
Portal di Ensiklopedia Dunia