Для действительных матриц условие эрмитовости матрицы сводится к её симметричности, а эрмитово сопряжение векторов превращается в обычное транспонирование.
Заметьте, что для любой вещественной константы .
Напомним, что эрмитова (как и симметричная вещественная) матрица имеет вещественные собственные значения. Можно показать, что для матрицы отношение Рэлея достигает минимального значения (наименьшее собственное число матрицы ) когда равен (соответствующий собственный вектор).
Подобным образом можно показать, что и .
Отношение Рэлея используется в теореме Куранта-Фишера о минимаксе для получения всех значений собственных чисел[4].
Используется оно и в алгоритмах нахождения собственных значений матрицы для получения приближения собственного значения из приближения собственного вектора. А именно, отношение является базой для итераций с отношением Рэлея[англ.][5][6].
Ковариационная матрицаM для многомерной статистической выборки A (матрицы наблюдений) может быть представлена в виде произведения A'A[9][10]. Будучи симметричной вещественной матрицей, M имеет неотрицательные собственные значения и ортогональные (или приводимые к ортогональным) собственные вектора.
Во-первых, то, что собственные значения не отрицательны:
И, во-вторых, что собственные вектора ортогональны друг другу:
(если собственные значения различны — в случае одинаковых значений можно найти ортогональный базис).
Теперь покажем, что отношение Рэлея принимает максимальное значение на векторе, соответствующем наибольшее собственное значение.
Разложим произвольный вектор по базису собственных нормированных векторов vi:
, где является проекцией x на
Таким образом, равенство
можно переписать в следующем виде:
Поскольку собственные вектора ортогональны, последнее равенство превращается в
Последнее равенство показывает, что отношение Рэлея является суммой квадратов косинусов углов между вектором и каждым из собственных векторов , умноженных на соответствующее собственное значение.
Если вектор максимизирует , то все вектора, полученные из умножением на скаляр ( для ) также максимизируют R. Таким образом, задачу можно свести к нахождению максимума при условии .
Поскольку все собственные числа не отрицательны, задача сводится к нахождению максимума выпуклой функции и можно показать, что он достигается при и (собственные значения упорядочены по убыванию).
Таким образом, отношение Рэлея достигает максимума на собственном векторе, соответствующему максимальному собственному значению.
Тот же результат с использованием множителей Лагранжа
при постоянной величине
То есть, нужно найти критические точки функции
где — множитель Лагранжа.
Для стационарных точек функции выполняется равенство
и
Таким образом, собственные вектора матрицы M являются критическими точками отношения Рэлея и их собственные значения — соответствующими стационарными значениями.