Модель пересекающихся поколенийМодель пересекающихся (перекрывающихся) поколений (модель Даймонда, модель Самуэльсона — Даймонда, англ. overlapping generations model) — модель экзогенного экономического роста в условиях совершенной конкуренции. Внесла вклад в понимание того, каким образом решения индивидов формируют норму сбережений в экономике. В модели отражено изменение потребительского поведения индивида по мере взросления. Вместе с тем, в модели отрицаются альтруистические связи между поколениями, и она не даёт удовлетворительного объяснения межстрановым различиям в уровне дохода на душу населения. Разработана Питером Даймондом с использованием идей Пола Самуэльсона в 1965 году. История созданияВ первых моделях экономического роста (модель Солоу, модель Харрода — Домара) использовались экзогенно задаваемые параметры «норма сбережений» и «темп научно-технического прогресса», от которых, в конечном итоге, и зависели темпы роста. Исследователи же хотели получить обоснование темпов экономического роста внутренними (эндогенными) факторами, поскольку модели с заданной нормой сбережений имели ряд недостатков. Они не объясняли устойчивые различия в уровнях и темпах роста между развивающимися и развитыми странами. В модели Рамсея — Касса — Купманса был преодолён недостаток экзогенности нормы сбережений. Однако она сохранила другой недостаток ранних моделей — в ней рассматривается бесконечно живущий индивид (или домохозяйство) в качестве вечного потребителя[1]. Но по мере взросления характер потребительского поведения меняется. Если в молодом возрасте индивид работает и делает сбережения, то в старости он эти сбережения тратит[2]. Именно на это будущий лауреат Нобелевской премии по экономике Пол Самуэльсон обратил более пристальное внимание. В декабре 1958 года он опубликовал работу «Моделирование процентной ставки на основе соотношения потребления и кредитования при наличии или отсутствии социальной концепции денег», в которой была представлена простая модель экономики на основе идей Ойген фон Бём-Баверка о причинах существования процентного дохода на капитал, где были выделены три периода жизни индивидуума и соответствующее им потребление (в первых двух он работает, в третьем — выходит на пенсию)[3]. В декабре 1965 года Питер Даймонд, также будущий лауреат Нобелевской премии по экономике, опубликовал работу «Национальный долг в неоклассической модели роста» в журнале The American Economic Review[англ.], в которой он развил идеи Самуэльсона с учётом выводов модели Солоу и модели Рамсея — Касса — Купманса и представил модель пересекающихся поколений[1][2][4], также известную как модель Даймонда[5], модель Самуэльсона — Даймонда[6]. Описание моделиБазовые предпосылки моделиВ модели рассматривается закрытая экономика. Фирмы максимизируют свою прибыль, а потребители — полезность своих трат. Фирмы функционируют в условиях совершенной конкуренции. Производится только один продукт , используемый как для потребления , так и для производственных нужд (учитывается как инвестиции) . Темпы технологического прогресса , роста населения и норма выбытия оборудования (капитала) — постоянны и задаются экзогенно. Индивидуумы живут два периода: в первом они работают, потребляют и сберегают, во втором — только потребляют, тратя накопленные в первом периоде сбережения (выходят на пенсию). Альтруистические связи между поколениями отсутствуют: молодые не помогают старикам и не получают наследство. Время изменяется дискретно[6][7][8]. Один период в модели соответствует смене поколений, то есть в реальном выражении эквивалентен примерно 25—30 годам[9]. Закрытость экономики означает, что произведённый продукт тратится только на сбережение и потребление, экспорт/импорт отсутствуют, инвестиции равны сбережениям:, [10][11]. Производственная функция удовлетворяет неоклассическим предпосылкам[12]:
Население растёт с постоянным темпом : . В каждом периоде живёт молодых и пожилых индивидов. Совокупное потребление равно[13]:
Молодой индивид предлагает одну единицу труда (предложение труда неэластично) и получает натуральную заработную плату (неким количеством единственного товара, деньги отсутствуют). Каждый индивид выбирает и разделяет полученное между потреблением в молодости или сбережением и потреблением в старости, максимизируя межвременную полезность своих трат, которая описывается следующей функцией[14]:
Функция удовлетворяет условиям и условиям Инады (при потреблении, стремящемся к нулю, предельная полезность стремится к бесконечности; при потреблении, стремящемся к бесконечности, предельная полезность стремится к нулю): . Вначале весь капитал находится у пожилых, они его полностью тратят в течение первого периода. Сбережения равны инвестициям, которые делает молодое поколение. Инвестиции в свою очередь равны капиталу в следующем периоде[6][15]:
Для поиска решения модели используются удельные показатели: выпуск на единицу эффективного труда , капитал на единицу эффективного труда [16]. Задача потребителяПотребитель максимизирует межвременную полезность своих трат. Поскольку, согласно модели, индивид работает только в молодости (первом периоде), межвременное бюджетное ограничение потребителя соответствует формуле[17]:
Таким образом, задача потребителя имеет следующий вид:
Для решения этой задачи составляется функция Лагранжа и находится её максимум[17]. Нахождение максимума функции Лагранжа
Условия максимума: Результатом решения этой системы уравнений является норма сбережений для периода [15]:
Задача фирмыФирма максимизирует свою прибыль . Выпуск фирмы описывается неоклассической производственной функцией[18]:
Задача фирмы выглядит следующим образом: В условиях совершенной конкуренции решение задачи фирмы приводит к тому, что плата за труд (заработная плата) и плата за капитал (процентная ставка) равны соответствующим предельным производительностям[19][18]:
Общее экономическое равновесиеПо предпосылкам модели:. Откуда с учётом решения задач потребителя и фирмы, получаем[19]:
Поскольку входит как в правую, так и в левую части уравнения, найти явные решения этого уравнения можно только введя дополнительные предпосылки. При условии, что потребление в первом периоде и потребление во втором периоде являются совершенными заменителями, то равновесие существует. Если при этом сбережения монотонно возрастают по процентной ставке (), то это равновесие является единственным. Если обозначить , где — сбережения в расчёте на единицу труда с постоянной эффективностью в периоде , то уравнение примет вид[20]:
Откуда можно выразить динамику капиталовооружённости[20]:
В результате может получиться два варианта фазовой плоскости (см. иллюстрации). В первом варианте кривая выходит из начала координат под углом более чем 45° (выше линии ), и в модели будет нечётное число равновесных состояний (пересечения и ), из которых пересечения, по порядку идущие нечётными от начала координат (первое, третье, пятое и т. д.), будут устойчивыми равновесиями, а идущие чётными (второе, четвёртое и т. д.) — неустойчивыми. Во втором варианте кривая выходит из начала координат под углом менее чем 45° (ниже линии ), и в модели будет чётное число равновесных состояний, из которых пересечения, идущие чётными от начала координат (второе, четвёртое и т. д.), будут устойчивыми равновесиями, а идущие нечётными (первое, третье и т. д.) — неустойчивыми[21]. Равновесие для производственной функции Кобба-Дугласа и логарифмической функции полезностиНаглядно достижение равновесия можно продемонстрировать в случае логарифмической функции полезности и производственной функции Кобба-Дугласа. В этом случае , а полезность трат для индивида описывается функцией[22]:
Выпуск описывается следующей функцией:
Тогда, норма сбережений равна: , а устойчивый уровень капиталовооружённости (в данном случае существует только одно равновесное состояние) равен[22][23]: . Процесс достижения равновесия на фазовой плоскости для рассматриваемого случая показан на иллюстрации. Устойчивый уровень выпуска на единицу труда с постоянной эффективностью в этом случае составляет:
Как и в моделях Солоу и Рамсея — Касса — Купманса, потребление максимально в том случае, если . Таким образом, в модели возможна динамическая неэффективность (избыточное накопление капитала), в том случае, если[24]:
КонвергенцияМодель предполагает наличие условной конвергенции, то есть, что страны с малым уровнем капиталовооружённости будут расти более высокими темпами, чем страны с большим уровнем капиталовооружённости, при условии, что устойчивое состояние у них одинаково. Частный случай с производственной функцией Кобба — Дугласа и логарифмической полезностью позволяет оценить, насколько быстро она происходит. Скорость приближения к устойчивому состоянию можно оценить при помощи линейной аппроксимации в зависимости от посредством разложения в ряд Тейлора[25]:
Если обозначить производную в точке равновесия , то путем рекуррентных постановок получается следующее уравнение приближения к равновесному состоянию:
Для рассматриваемого случая, , потому:
Таким образом, в рассматриваемом случае скорость конвергенции напрямую зависит от — доли дохода на капитал в общем доходе. Чем меньше доля дохода на капитал, тем быстрее происходит движение к равновесному состоянию, и тем быстрее бедные страны догоняют богатые[9]. Фискальная политика в моделиМодель позволяет оценить влияние фискальной политики на равновесие. В рамках модели, увеличение налогов и государственных расходов приводит к равновесию с меньшим уровнем капиталовооружённости, выпуска и потребления. Влияние бюджетно-налоговой политики показано на диаграмме. Кривая сдвигается вниз на величину — налогов (государственных расходов) на единицу эффективного труда, величина налогов предполагается равной величине государственных расходов, которые не влияют на полезность индивидов и будущий выпуск. Равновесие сдвигается из точки (устойчивое равновесие) в точку (устойчивое равновесие), и устанавливается на более низком уровне капиталовооружённости и потребления. Появившаяся третья равновесная точка является неустойчивым равновесием. Равенство Рикардо — Барро не выполняется[6][26]. Таким образом, в модели государственные расходы вытесняют как потребление, так и инвестиции[27]. Преимущества, недостатки и дальнейшее развитие моделиОдним из существенных недостатков модели является полное отрицание альтруистических связей между поколениями[28]. Чтобы преодолеть этот недостаток, Джеймс Андреони, а также Роберт Барро и Хавьер Сала-и-Мартин предложили ввести в функцию полезности трат каждого индивида полезность трат его детей с некоторым коэффициентом[29][4]. В этом случае модель превращается в дискретный аналог модели Рамсея — Касса — Купманса для случая когда . Динамическая неэффективность становится невозможной, а последствия бюджетно-налоговой политики отвечают равенству Рикардо — Барро. Однако в этом случае модель приобретает и недостатки модели Рамсея — Касса — Купманса: утрачивается возможность несовершенства рынка (динамической неэффективности), а значит, модель перестает объяснять причины, приводящие к неоптимальному по Парето равновесию в экономике[26]. Пол Самуэльсон использовал данную модель для исследования влияния распределительной пенсионной системы на общее экономическое равновесие. В работе показано, что, если в экономике установилось динамически неэффективное равновесие с избыточным накоплением капитала, то распределительная пенсионная система позволяет перейти к более оптимальному распределению ресурсов с более высоким потреблением[30][31]. Если же используется накопительная пенсионная система, то экономическое равновесие остается прежним[32]. Модификация модели с непрерывным временем, в которой жизнь индивида не делится на периоды молодости и старости, однако индивид может умереть в любой момент с некоторой вероятностью, была разработана Менахемом Яари[33] и Оливье Бланшаром[34]. Из-за того, что в этой модификации вероятность смерти индивида не меняется с возрастом, она получила название «модель вечной молодости»[35]. В ней существует единственное равновесное значение капиталовооружённости, которое при этом устойчиво, и так же, как и в основном варианте, присутствует возможность избыточного накопления в точке равновесия[36]. В целом, модель пересекающихся поколений более реалистично описывает общее экономическое равновесие и процесс его достижения, чем модели Солоу или Рамсея — Касса — Купманса[26]. Преимуществом модели является возможность динамической неэффективности, однако в модели она связана с избыточным накоплением капитала, которое не является типичной проблемой развивающихся стран, напротив, характеризующихся недостаточным накоплением капитала[37]. К тому же, модель предполагает наличие условной конвергенции, что означает, что бедные страны должны расти быстрее богатых при условии схожести структурных параметров, но в реальности этого не происходит, как показали, например, исследования Р. Холла и Ч. Джонса[38], Дж. Де Лонга[39], П. Ромера[40]. Также, как и в моделях Солоу и Рамсея — Касса — Купманса, научно-технический прогресс в модели пересекающихся поколений не является следствием принятия решений экономическими агентами, а задаётся экзогенно. Потому, при всех своих достоинствах, модель не даёт ответа на вопрос, почему одни страны богатые, а другие — бедные, и почему вторые не могут догнать первых[37]. Примечания
Литература
|