Модель Бозе — Хаббарда даёт примерное описание физики взаимодействия бозонов на пространственной решётке. Она тесно связана с моделью Хаббарда, возникшей в физике твёрдого тела как приближённое описание сверхпроводящих систем и движения электронов между атомами твёрдого кристаллического вещества. Слово Бозе указывает на тот факт, что частица в системе — бозон. Впервые модель была введена Х. Гершем (англ. H. Gersch) и Г. Ноллмэном (англ. G. Knollman)[1] в 1963 году, модель Бозе — Хаббарда может использоваться при изучении систем подобных бозонным атомам в оптической решётке. В противоположность этому, модель Хаббарда применима к фермионам (электронам), а не бозонам. Кроме того, модель обобщается на сочетания Бозе- и Ферми-частиц, в этом случае, в соответствии с гамильтонианом, модель будет называться моделью Бозе — Ферми — Хаббарда.
Гамильтониан
Физика этой модели описывается гамильтонианом Бозе — Хаббарда в представлении вторичного квантования:
![{\displaystyle {\hat {H}}=-t\sum _{\left\langle i,j\right\rangle }\left(b_{i}^{\dagger }b_{j}+b_{j}^{\dagger }b_{i}\right)+{\frac {U}{2}}\sum _{i}{\hat {n}}_{i}\left({\hat {n}}_{i}-1\right)-\mu \sum _{i}{\hat {n}}_{i},}](https://wikimedia.org/api/rest_v1/media/math/render/svg/01c446ce3266cf519e53998190a53312733f7c70)
где индекс i обозначает суммирование по всем узлам решётки трёхмерной решётки, а
означает суммирование по всем узлам j соседствующим с i.
и
— бозонные операторы рождения и уничтожения. Оператор
задаёт число частиц в узле i. Параметр t — это матричный элемент перехода, имеющий смысл подвижности бозонов в решётке. Параметр U описывает локальное взаимодействие частиц находящихся в одном узле, если U>0, то он описывает потенциал отталкивания и если U<0, то описывает притяжение,
— химический потенциал. Данный гамильтониан не рассматривает эффекты, которые малы в термодинамическом пределе, а именно, когда размер системы и число узлов стремятся к бесконечности. В то же время плотность узлов остаётся конечной[1].
Размерность Гильбертова пространства модели Бозе — Хаббарда растёт экспоненциально по отношению к числу частиц N и узлов решётки L. Она определяется по формуле:
,
в то время как в модели Ферми — Хаббарда задаётся формулой:
Различные результаты следуют из различия статистики для фермионов и бозонов. Для смеси Бозе- и Ферми-частиц, соответствующее гильбертово пространство в модели Бозе — Ферми — Хаббарда — это прямое тензорное произведение гильбертовых пространств бозонной модели и фермионной модели.
Фазовая диаграмма
При нулевой температуре, модель Бозе — Хаббарда (при отсутствии беспорядка) находится либо в состоянии изолятора Мотта — состояние с малым t/U, либо в сверхтекучем состоянии — с большим t/U[2]. Изолятор Мотта характеризуется целочисленной плотностью бозонов, наличием запрещённой зоны для возбуждений частица-дырка и нулевой сжижаемостью. При наличии беспорядка, присутствует третья фаза «стекло Бозе». Она характеризуется конечной сжижаемостью, отсутствием запрещённой зоны, бесконечной сверхтекучестью.[3] Это изолирующее состояние, несмотря на наличие ширины запрещённой зоны, из-за того, что низкая вероятность туннелирования предотвращает образование возбуждений, которые хотя и близки по энергиям, но пространственно разделены.
Реализация в оптических решётках
Ультрахолодные атомы в оптических решётках считаются стандартной реализацией модели Бозе — Хаббарда. Возможность изменения параметров модели при помощи простых экспериментальных методов, отсутствие динамики решётки в электронных системах — всё это обеспечивает очень хорошие условия по экспериментальному изучению этой модели.[4][5]
Гамильтониан в формализме вторичного квантования описывает газ из ультрахолодных атомов в оптической решётке в следующем виде:
![{\displaystyle H=\int d^{3}{\vec {r}}{\hat {\psi }}^{\dagger }({\vec {r}})\left(-{\frac {\hbar ^{2}}{2m}}\nabla ^{2}+V_{latt.}(x)\right){\hat {\psi }}({\vec {r}})+{\frac {g}{2}}\int d^{3}{\vec {r}}{\hat {\psi }}^{\dagger }({\vec {r}}){\hat {\psi }}^{\dagger }({\vec {r}}){\hat {\psi }}({\vec {r}}){\hat {\psi }}({\vec {r}})-\mu \int d^{3}{\vec {r}}\psi ^{\dagger }({\vec {r}}){\hat {\psi }}({\vec {r}}),}](https://wikimedia.org/api/rest_v1/media/math/render/svg/79fc913fdc3d9a6e15938ae0d6764bd18aba6947)
где
— оптический потенциал решётки, g — амплитуда взаимодействия (здесь предполагается контактное взаимодействие),
— химический потенциал. Стандартное приближение сильно связанных электронов
![{\displaystyle {\hat {\psi }}({\vec {r}})=\sum \limits _{i}w_{i}^{\alpha }({\vec {r}})b_{i}^{\alpha }}](https://wikimedia.org/api/rest_v1/media/math/render/svg/a01275ad511f8724d96285bf6d4a373c9065ddee)
даёт гамильтонианы Бозе — Хаббарда, если дополнительно допустить, что
![{\displaystyle \int w_{i}^{\alpha }({\vec {r}})w_{j}^{\beta }({\vec {r}})w_{k}^{\gamma }(r)w_{l}^{\delta }({\vec {r}})d^{3}{\vec {r}}=0}](https://wikimedia.org/api/rest_v1/media/math/render/svg/308fdb3f2cc84bef94934ad29915be929e941937)
за исключением случаев
. Здесь
— это функция Ванье[англ.] для частицы в потенциале оптической решётки, локализованном вокруг узла i решётки и для
Блоховской зоны.[6]
Тонкие различия и приближения
Приближение сильно связанных электронов существенно упрощает вторичное квантование гамильтониана, в то же время вводя ряд ограничений:
- Параметры U и J на самом деле могут зависеть от плотности, как отброшенные члены, они фактически не равны нулю; вместо одного параметра U, энергия взаимодействия частиц n может быть описана следующим:
примерно, но не равно U [6]
- При рассмотрении быстрой динамики решётки, к гамильтониану Бозе — Хаббарда должны быть добавлены дополнительные условия, так что будет исполняться уравнение Шрёдингера. Оно выходит из зависимости функций Ванье от времени.[7]
Экспериментальные результаты
Квантовые фазовые переходы в модели Бозе — Хаббарда экспериментально наблюдались группой учёных из Греньера (Greiner) и др.[8] в Германии. Параметры взаимодействия
, зависящие от плотности, наблюдались группой Эммануэля Блоха[англ.].[9]
Дальнейшие приложения модели
Модель Бозе — Хаббарда также представляет интерес для тех, кто работает в области квантовых вычислений и квантовой информации. С помощью этой модели можно исследовать запутанность ультрахолодных атомов.[10]
Численное моделирование
При вычислении низкоэнергетических состояний член, пропорциональный
, что большое заниание одной стороны маловероятно, позволяя усекать местное гильбертово пространство к состояниям, содержащим не более
частиц. Тогда локальная размерность гильбертова пространства будет
Размерность полного гильбертового пространства растёт экспоненциально с числом мест в решётке, поэтому компьютерным моделированием огрничиваются системы из 15-20 частиц в 15-20 узлах решётки. Экспериментальные системы содержат несколько миллионов сторон решётки со средним заполнением выше единицы. Для численной симуляции этой модели, алгоритм точной диагонализации представлен в работе под сноской.[11]
Одномерные решётки могут быть рассмотрены методом группы ренормализации плотности матрицы[англ.] и связанными с этим методиками, такой как алгоритм Time-evolving block decimation[англ.]. Это включает в себя расчёт фонового состояния гамильтониана для систем из тысяч частиц на сторонах решётки и моделирование её динамики, регулирумой уравнение Шрёдингера. Высшие мерности решётки моделировать значительно сложнее при повышении запутанности.[12]
Все мерности могут рассматриваться алгоритмами квантового Монте-Карло[англ.], которые дают возможность изучать свойства тепловых состояний гамильтониана, а также конкретное фоновое состояние.
Обобщения
Подобные Бозе — Хаббарда гамильтонианы могут быть получены для:
- систем с плотность-плотность взаимодействиями
![{\displaystyle Vn_{i}n_{j}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c9f14e41eb81bc628ad1a3cdc5c7f52ab046b1b8)
- дальним дипольным взаимодействием [13]
- внутренней спиновой структурой (спин-1 модели Бозе — Хаббарда) [14]
- неупорядоченных систем [15]
См. также
Примечания
- ↑ 1 2 Gersch H. A., Knollman G. C. Quantum Cell Model for Bosons // Physical Review. — 1963. — 15 января (т. 129, № 2). — С. 959—967. — ISSN 0031-899X. — doi:10.1103/PhysRev.129.959. [исправить]
- ↑ Kühner T. D., Monien H. Phases of the one-dimensional Bose-Hubbard model // Physical Review B. — 1998. — 1 декабря (т. 58, № 22). — С. R14741—R14744. — ISSN 0163-1829. — doi:10.1103/PhysRevB.58.R14741. [исправить]
- ↑ Fisher, Matthew P. A.; Grinstein, G.; Fisher, Daniel S. Boson localization and the superfluid-insulator transition (англ.) // Physical Review B : journal. — 1989. — Vol. 40. — P. 546—570. — doi:10.1103/PhysRevB.40.546. — Bibcode: 1989PhRvB..40..546F.,
- ↑ Jaksch D., Bruder C., Cirac J. I., Gardiner C. W., Zoller P. Cold Bosonic Atoms in Optical Lattices // Physical Review Letters. — 1998. — 12 октября (т. 81, № 15). — С. 3108—3111. — ISSN 0031-9007. — doi:10.1103/PhysRevLett.81.3108. [исправить]
- ↑ Jaksch D., Zoller P. The cold atom Hubbard toolbox // Annals of Physics. — 2005. — Январь (т. 315, № 1). — С. 52—79. — ISSN 0003-4916. — doi:10.1016/j.aop.2004.09.010. [исправить]
- ↑ 1 2 Lühmann Dirk-Sören, Jürgensen Ole, Sengstock Klaus. Multi-orbital and density-induced tunneling of bosons in optical lattices // New Journal of Physics. — 2012. — 13 марта (т. 14, № 3). — С. 033021. — ISSN 1367-2630. — doi:10.1088/1367-2630/14/3/033021. [исправить]
- ↑ Łącki Mateusz, Zakrzewski Jakub. Fast Dynamics for Atoms in Optical Lattices // Physical Review Letters. — 2013. — 5 февраля (т. 110, № 6). — ISSN 0031-9007. — doi:10.1103/PhysRevLett.110.065301. [исправить]
- ↑ Greiner M., Mandel O., Esslinger T., Hänsch T. W., Bloch I. Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. (англ.) // Nature. — 2002. — Vol. 415, no. 6867. — P. 39—44. — doi:10.1038/415039a. — PMID 11780110. [исправить]
- ↑ Will Sebastian, Best Thorsten, Schneider Ulrich, Hackermüller Lucia, Lühmann Dirk-Sören, Bloch Immanuel. Time-resolved observation of coherent multi-body interactions in quantum phase revivals // Nature. — 2010. — Май (т. 465, № 7295). — С. 197—201. — ISSN 0028-0836. — doi:10.1038/nature09036. [исправить]
- ↑ Romero-Isart, O; Eckert, K; Rodó, C; Sanpera, A. Transport and entanglement generation in the Bose–Hubbard model (англ.) // Journal of Physics A: Mathematical and Theoretical[англ.] : journal. — 2007. — Vol. 40, no. 28. — P. 8019—8031. — doi:10.1088/1751-8113/40/28/S11. — Bibcode: 2007JPhA...40.8019R. — arXiv:quant-ph/0703177.
- ↑ Zhang, J M; Dong, R X. Exact diagonalization: The Bose–Hubbard model as an example (англ.) // European Journal of Physics : journal. — 2010. — Vol. 31, no. 3. — P. 591—602. — doi:10.1088/0143-0807/31/3/016. — Bibcode: 2010EJPh...31..591Z. — arXiv:1102.4006.
- ↑ Eisert J., Cramer M., Plenio M. B. Colloquium: Area laws for the entanglement entropy // Reviews of Modern Physics. — 2010. — 4 февраля (т. 82, № 1). — С. 277—306. — ISSN 0034-6861. — doi:10.1103/RevModPhys.82.277. [исправить]
- ↑ Góral K., Santos L., Lewenstein M. Quantum Phases of Dipolar Bosons in Optical Lattices // Physical Review Letters. — 2002. — 12 апреля (т. 88, № 17). — ISSN 0031-9007. — doi:10.1103/PhysRevLett.88.170406. [исправить]
- ↑ Tsuchiya Shunji, Kurihara Susumu, Kimura Takashi. Superfluid–Mott insulator transition of spin-1 bosons in an optical lattice // Physical Review A. — 2004. — 28 октября (т. 70, № 4). — ISSN 1050-2947. — doi:10.1103/PhysRevA.70.043628. [исправить]
- ↑ Gurarie V., Pollet L., Prokof’ev N. V., Svistunov B. V., Troyer M. Phase diagram of the disordered Bose-Hubbard model // Physical Review B. — 2009. — 17 декабря (т. 80, № 21). — ISSN 1098-0121. — doi:10.1103/PhysRevB.80.214519. [исправить]