Математические операторы

Математические операторы
англ. Mathematical Operators
Диапазон 2200—22FF
(256 кодовых позиций)
Плоскость BMP
Письменности Общая
Основные алфавиты Математические символы
Логические и множественные операторы
Символы отношений
Кодовые позиции
Задействовано 256 кодовых позиций
Зарезервировано 0 кодовых позиций
История изменений символов в Юникоде
1.0.0 242 (+242)
3.2 256 (+14)
Примечания: [1][2]
Официальный документ Юникода

Математические операторы (англ. Mathematical Operators) — блок стандарта Юникод. Содержит символы для математической, логической и множественной записи.

Знаки плюс (+), минус (-), равно (=), больше (>) и меньше (<) чем имеются в блоке Основная латиница. А знаки плюс-минус (±), умножение (×) и деление (÷) имеются в блоке Дополнение к латинице — 1. Для отделения от дефиса решили добавить отдельный знак минуса в позиции U+2212 (−).

Список символов

Код Символ Название Характеристики в Юникоде Версия,
в которой
был
добавлен
символ
HTML
Категория
символа
Класс комбини-
руемости
Класс
направ-
ления
Тип
разрыва
строки
Мнемо-
ника
16-чный 10-чный
U+2200 for all Sm 0 ON AI 1.0.0 &forall; &#x2200; &#8704;
U+2201 complement Sm 0 ON AL 1.0.0 &complement; &#x2201; &#8705;
U+2202 partial differential Sm 0 ON AI 1.0.0 &part; &#x2202; &#8706;
U+2203 there exists Sm 0 ON AI 1.0.0 &exist; &#x2203; &#8707;
U+2204 there does not exist Sm 0 ON AL 1.0.0 &NotExists; &#x2204; &#8708;
U+2205 empty set Sm 0 ON AL 1.0.0 &varnothing; &#x2205; &#8709;
U+2206 increment Sm 0 ON AL 1.0.0 &#x2206; &#8710;
U+2207 nabla Sm 0 ON AI 1.0.0 &nabla; &#x2207; &#8711;
U+2208 element of Sm 0 ON AI 1.0.0 &isinv; &#x2208; &#8712;
U+2209 not an element of Sm 0 ON AL 1.0.0 &NotElement; &#x2209; &#8713;
U+220A small element of Sm 0 ON AL 1.0.0 &#x220A; &#8714;
U+220B contains as member Sm 0 ON AI 1.0.0 &ReverseElement; &#x220B; &#8715;
U+220C does not contain as member Sm 0 ON AL 1.0.0 &NotReverseElement; &#x220C; &#8716;
U+220D small contains as member Sm 0 ON AL 1.0.0 &#x220D; &#8717;
U+220E end of proof Sm 0 ON AL 1.0.0 &#x220E; &#8718;
U+220F n-ary product Sm 0 ON AI 1.0.0 &prod; &#x220F; &#8719;
U+2210 n-ary coproduct Sm 0 ON AL 1.0.0 &Coproduct; &#x2210; &#8720;
U+2211 n-ary summation Sm 0 ON AI 1.0.0 &sum; &#x2211; &#8721;
U+2212 minus sign Sm 0 ES PR 1.0.0 &minus; &#x2212; &#8722;
U+2213 minus-or-plus sign Sm 0 ET PR 1.0.0 &mp; &#x2213; &#8723;
U+2214 dot plus Sm 0 ON AL 1.0.0 &plusdo; &#x2214; &#8724;
U+2215 division slash Sm 0 ON AI 1.0.0 &#x2215; &#8725;
U+2216 set minus Sm 0 ON AL 1.0.0 &smallsetminus; &#x2216; &#8726;
U+2217 asterisk operator Sm 0 ON AL 1.0.0 &lowast; &#x2217; &#8727;
U+2218 ring operator Sm 0 ON AL 1.0.0 &SmallCircle; &#x2218; &#8728;
U+2219 bullet operator Sm 0 ON AL 1.0.0 &#x2219; &#8729;
U+221A square root Sm 0 ON AI 1.0.0 &Sqrt; &#x221A; &#8730;
U+221B cube root Sm 0 ON AL 1.0.0 &#x221B; &#8731;
U+221C fourth root Sm 0 ON AL 1.0.0 &#x221C; &#8732;
U+221D proportional to Sm 0 ON AI 1.0.0 &Proportional; &#x221D; &#8733;
U+221E infinity Sm 0 ON AI 1.0.0 &infin; &#x221E; &#8734;
U+221F right angle Sm 0 ON AI 1.0.0 &angrt; &#x221F; &#8735;
U+2220 angle Sm 0 ON AI 1.0.0 &angle; &#x2220; &#8736;
U+2221 measured angle Sm 0 ON AL 1.0.0 &measuredangle; &#x2221; &#8737;
U+2222 spherical angle Sm 0 ON AL 1.0.0 &angsph; &#x2222; &#8738;
U+2223 divides Sm 0 ON AI 1.0.0 &VerticalBar; &#x2223; &#8739;
U+2224 does not divide Sm 0 ON AL 1.0.0 &NotVerticalBar; &#x2224; &#8740;
U+2225 parallel to Sm 0 ON AI 1.0.0 &shortparallel; &#x2225; &#8741;
U+2226 not parallel to Sm 0 ON AL 1.0.0 &NotDoubleVerticalBar; &#x2226; &#8742;
U+2227 logical and Sm 0 ON AI 1.0.0 &wedge; &#x2227; &#8743;
U+2228 logical or Sm 0 ON AI 1.0.0 &vee; &#x2228; &#8744;
U+2229 intersection Sm 0 ON AI 1.0.0 &cap; &#x2229; &#8745;
U+222A union Sm 0 ON AI 1.0.0 &cup; &#x222A; &#8746;
U+222B integral Sm 0 ON AI 1.0.0 &int; &#x222B; &#8747;
U+222C double integral Sm 0 ON AI 1.0.0 &Int; &#x222C; &#8748;
U+222D triple integral Sm 0 ON AL 1.0.0 &tint; &#x222D; &#8749;
U+222E contour integral Sm 0 ON AI 1.0.0 &ContourIntegral; &#x222E; &#8750;
U+222F surface integral Sm 0 ON AL 1.0.0 &DoubleContourIntegral; &#x222F; &#8751;
U+2230 volume integral Sm 0 ON AL 1.0.0 &Cconint; &#x2230; &#8752;
U+2231 clockwise integral Sm 0 ON AL 1.0.0 &cwint; &#x2231; &#8753;
U+2232 clockwise contour integral Sm 0 ON AL 1.0.0 &ClockwiseContourIntegral; &#x2232; &#8754;
U+2233 anticlockwise contour integral Sm 0 ON AL 1.0.0 &CounterClockwiseContourIntegral; &#x2233; &#8755;
U+2234 therefore Sm 0 ON AI 1.0.0 &therefore; &#x2234; &#8756;
U+2235 because Sm 0 ON AI 1.0.0 &because; &#x2235; &#8757;
U+2236 ratio Sm 0 ON AI 1.0.0 &ratio; &#x2236; &#8758;
U+2237 proportion Sm 0 ON AI 1.0.0 &Proportion; &#x2237; &#8759;
U+2238 dot minus Sm 0 ON AL 1.0.0 &dotminus; &#x2238; &#8760;
U+2239 excess Sm 0 ON AL 1.0.0 &#x2239; &#8761;
U+223A geometric proportion Sm 0 ON AL 1.0.0 &mDDot; &#x223A; &#8762;
U+223B homothetic Sm 0 ON AL 1.0.0 &homtht; &#x223B; &#8763;
U+223C tilde operator Sm 0 ON AI 1.0.0 &Tilde; &#x223C; &#8764;
U+223D reversed tilde Sm 0 ON AI 1.0.0 &bsim; &#x223D; &#8765;
U+223E inverted lazy s Sm 0 ON AL 1.0.0 &ac; &#x223E; &#8766;
U+223F sine wave Sm 0 ON AL 1.0.0 &acd; &#x223F; &#8767;
U+2240 wreath product Sm 0 ON AL 1.0.0 &VerticalTilde; &#x2240; &#8768;
U+2241 not tilde Sm 0 ON AL 1.0.0 &nsim; &#x2241; &#8769;
U+2242 minus tilde Sm 0 ON AL 1.0.0 &EqualTilde; &#x2242; &#8770;
U+2243 asymptotically equal to Sm 0 ON AL 1.0.0 &TildeEqual; &#x2243; &#8771;
U+2244 not asymptotically equal to Sm 0 ON AL 1.0.0 &NotTildeEqual; &#x2244; &#8772;
U+2245 approximately equal to Sm 0 ON AL 1.0.0 &TildeFullEqual; &#x2245; &#8773;
U+2246 approximately but equal to Sm 0 ON AL 1.0.0 &simne; &#x2246; &#8774;
U+2247 neither approximately not actually equal to Sm 0 ON AL 1.0.0 &NotTildeFullEqual; &#x2247; &#8775;
U+2248 almost equal to Sm 0 ON AI 1.0.0 &thickapprox; &#x2248; &#8776;
U+2249 not almost equal to Sm 0 ON AL 1.0.0 &NotTildeTilde; &#x2249; &#8777;
U+224A almost equal or equal to Sm 0 ON AL 1.0.0 &ape; &#x224A; &#8778;
U+224B triple tilde Sm 0 ON AL 1.0.0 &apid; &#x224B; &#8779;
U+224C all equal to Sm 0 ON AI 1.0.0 &bcong; &#x224C; &#8780;
U+224D equivalent to Sm 0 ON AL 1.0.0 &CupCap; &#x224D; &#8781;
U+224E geometrically equivalent to Sm 0 ON AL 1.0.0 &HumpDownHump; &#x224E; &#8782;
U+224F difference between Sm 0 ON AL 1.0.0 &bumpe; &#x224F; &#8783;
U+2250 approaches the limit Sm 0 ON AL 1.0.0 &esdot; &#x2250; &#8784;
U+2251 geometrically equal to Sm 0 ON AL 1.0.0 &eDot; &#x2251; &#8785;
U+2252 approximately equal to or the image of Sm 0 ON AI 1.0.0 &fallingdotseq; &#x2252; &#8786;
U+2253 image of or approximately equal to Sm 0 ON AL 1.0.0 &risingdotseq; &#x2253; &#8787;
U+2254 colon equals Sm 0 ON AL 1.0.0 &coloneq; &#x2254; &#8788;
U+2255 equals colon Sm 0 ON AL 1.0.0 &eqcolon; &#x2255; &#8789;
U+2256 ring in equal to Sm 0 ON AL 1.0.0 &ecir; &#x2256; &#8790;
U+2257 ring equal to Sm 0 ON AL 1.0.0 &cire; &#x2257; &#8791;
U+2258 corresponds to Sm 0 ON AL 1.0.0 &#x2258; &#8792;
U+2259 estimates Sm 0 ON AL 1.0.0 &wedgeq; &#x2259; &#8793;
U+225A equiangular to Sm 0 ON AL 1.0.0 &veeeq; &#x225A; &#8794;
U+225B star equals Sm 0 ON AL 1.0.0 &#x225B; &#8795;
U+225C delta equal to Sm 0 ON AL 1.0.0 &trie; &#x225C; &#8796;
U+225D equal to by definition Sm 0 ON AL 1.0.0 &#x225D; &#8797;
U+225E measured by Sm 0 ON AL 1.0.0 &#x225E; &#8798;
U+225F questioned equal to Sm 0 ON AL 1.0.0 &questeq; &#x225F; &#8799;
U+2260 not equal to Sm 0 ON AI 1.0.0 &ne; &#x2260; &#8800;
U+2261 identical to Sm 0 ON AI 1.0.0 &equiv; &#x2261; &#8801;
U+2262 not identical to Sm 0 ON AL 1.0.0 &NotCongruent; &#x2262; &#8802;
U+2263 strictly identical to Sm 0 ON AL 1.0.0 &#x2263; &#8803;
U+2264 less-than or equal to Sm 0 ON AI 1.0.0 &leq; &#x2264; &#8804;
U+2265 greater-than or equal to Sm 0 ON AI 1.0.0 &GreaterEqual; &#x2265; &#8805;
U+2266 less-than over equal to Sm 0 ON AI 1.0.0 &LessFullEqual; &#x2266; &#8806;
U+2267 greater-than over equal to Sm 0 ON AI 1.0.0 &GreaterFullEqual; &#x2267; &#8807;
U+2268 less-than but not equal to Sm 0 ON AL 1.0.0 &lneqq; &#x2268; &#8808;
U+2269 greater-than but not equal to Sm 0 ON AL 1.0.0 &gneqq; &#x2269; &#8809;
U+226A much less-than Sm 0 ON AI 1.0.0 &NestedLessLess; &#x226A; &#8810;
U+226B much greater-than Sm 0 ON AI 1.0.0 &NestedGreaterGreater; &#x226B; &#8811;
U+226C between Sm 0 ON AL 1.0.0 &twixt; &#x226C; &#8812;
U+226D not equivalent to Sm 0 ON AL 1.0.0 &NotCupCap; &#x226D; &#8813;
U+226E not less-than Sm 0 ON AI 1.0.0 &nlt; &#x226E; &#8814;
U+226F not greater-than Sm 0 ON AI 1.0.0 &NotGreater; &#x226F; &#8815;
U+2270 neither less-than nor equal to Sm 0 ON AL 1.0.0 &NotLessEqual; &#x2270; &#8816;
U+2271 neither greater-than nor equal to Sm 0 ON AL 1.0.0 &NotGreaterEqual; &#x2271; &#8817;
U+2272 less-than or equivalent to Sm 0 ON AL 1.0.0 &lsim; &#x2272; &#8818;
U+2273 greater-than or equivalent to Sm 0 ON AL 1.0.0 &GreaterTilde; &#x2273; &#8819;
U+2274 neither less-than nor equivalent to Sm 0 ON AL 1.0.0 &NotLessTilde; &#x2274; &#8820;
U+2275 neither greater-than nor equivalent to Sm 0 ON AL 1.0.0 &NotGreaterTilde; &#x2275; &#8821;
U+2276 less-than or greater-than Sm 0 ON AL 1.0.0 &LessGreater; &#x2276; &#8822;
U+2277 greater-than or less than Sm 0 ON AL 1.0.0 &GreaterLess; &#x2277; &#8823;
U+2278 neither less-than nor greater-than Sm 0 ON AL 1.0.0 &NotLessGreater; &#x2278; &#8824;
U+2279 neither greater-than nor less than Sm 0 ON AL 1.0.0 &NotGreaterLess; &#x2279; &#8825;
U+227A precedes Sm 0 ON AL 1.0.0 &prec; &#x227A; &#8826;
U+227B succeeds Sm 0 ON AL 1.0.0 &succ; &#x227B; &#8827;
U+227C precedes or equal to Sm 0 ON AL 1.0.0 &PrecedesSlantEqual; &#x227C; &#8828;
U+227D succeeds or equal to Sm 0 ON AL 1.0.0 &SucceedsSlantEqual; &#x227D; &#8829;
U+227E precedes or equivalent to Sm 0 ON AL 1.0.0 &PrecedesTilde; &#x227E; &#8830;
U+227F succeeds or equivalent to Sm 0 ON AL 1.0.0 &SucceedsTilde; &#x227F; &#8831;
U+2280 does not precede Sm 0 ON AL 1.0.0 &NotPrecedes; &#x2280; &#8832;
U+2281 does not succeed Sm 0 ON AL 1.0.0 &NotSucceeds; &#x2281; &#8833;
U+2282 subset of Sm 0 ON AI 1.0.0 &sub; &#x2282; &#8834;
U+2283 superset of Sm 0 ON AI 1.0.0 &sup; &#x2283; &#8835;
U+2284 not a subset of Sm 0 ON AL 1.0.0 &nsub; &#x2284; &#8836;
U+2285 not a superset of Sm 0 ON AL 1.0.0 &nsup; &#x2285; &#8837;
U+2286 subset of or equal to Sm 0 ON AI 1.0.0 &SubsetEqual; &#x2286; &#8838;
U+2287 superset of or equal to Sm 0 ON AI 1.0.0 &SupersetEqual; &#x2287; &#8839;
U+2288 neither a subset of nor equal to Sm 0 ON AL 1.0.0 &NotSubsetEqual; &#x2288; &#8840;
U+2289 neither a superset of nor equal to Sm 0 ON AL 1.0.0 &NotSupersetEqual; &#x2289; &#8841;
U+228A subset of with not equal to Sm 0 ON AL 1.0.0 &subne; &#x228A; &#8842;
U+228B superset of with not equal to Sm 0 ON AL 1.0.0 &supne; &#x228B; &#8843;
U+228C multiset Sm 0 ON AL 1.0.0 &#x228C; &#8844;
U+228D multiset multiplication Sm 0 ON AL 1.0.0 &cupdot; &#x228D; &#8845;
U+228E multiset union Sm 0 ON AL 1.0.0 &uplus; &#x228E; &#8846;
U+228F square image of Sm 0 ON AL 1.0.0 &SquareSubset; &#x228F; &#8847;
U+2290 square original of Sm 0 ON AL 1.0.0 &SquareSuperset; &#x2290; &#8848;
U+2291 square image of or equal to Sm 0 ON AL 1.0.0 &sqsubseteq; &#x2291; &#8849;
U+2292 square original of or equal to Sm 0 ON AL 1.0.0 &SquareSupersetEqual; &#x2292; &#8850;
U+2293 square cap Sm 0 ON AL 1.0.0 &SquareIntersection; &#x2293; &#8851;
U+2294 square cup Sm 0 ON AL 1.0.0 &SquareUnion; &#x2294; &#8852;
U+2295 circled plus Sm 0 ON AI 1.0.0 &CirclePlus; &#x2295; &#8853;
U+2296 circled minus Sm 0 ON AL 1.0.0 &CircleMinus; &#x2296; &#8854;
U+2297 circled times Sm 0 ON AL 1.0.0 &CircleTimes; &#x2297; &#8855;
U+2298 circled division slash Sm 0 ON AL 1.0.0 &osol; &#x2298; &#8856;
U+2299 circled dot operator Sm 0 ON AI 1.0.0 &osot; &#x2299; &#8857;
U+229A circled ring operator Sm 0 ON AL 1.0.0 &circledcirc; &#x229A; &#8858;
U+229B circled asterisk operator Sm 0 ON AL 1.0.0 &circledast; &#x229B; &#8859;
U+229C circled equals Sm 0 ON AL 1.0.0 &#x229C; &#8860;
U+229D circled dash Sm 0 ON AL 1.0.0 &circleddash; &#x229D; &#8861;
U+229E squared plus Sm 0 ON AL 1.0.0 &plusb; &#x229E; &#8862;
U+229F squared minus Sm 0 ON AL 1.0.0 &boxminus; &#x229F; &#8863;
U+22A0 squared times Sm 0 ON AL 1.0.0 &boxtimes; &#x22A0; &#8864;
U+22A1 squared dot operator Sm 0 ON AL 1.0.0 &sdotb; &#x22A1; &#8865;
U+22A2 right tack Sm 0 ON AL 1.0.0 &vdash; &#x22A2; &#8866;
U+22A3 left tack Sm 0 ON AL 1.0.0 &dashv; &#x22A3; &#8867;
U+22A4 down tack Sm 0 ON AL 1.0.0 &top; &#x22A4; &#8868;
U+22A5 up tack Sm 0 ON AI 1.0.0 &UpTee; &#x22A5; &#8869;
U+22A6 assertion Sm 0 ON AL 1.0.0 &#x22A6; &#8870;
U+22A7 models Sm 0 ON AL 1.0.0 &models; &#x22A7; &#8871;
U+22A8 true Sm 0 ON AL 1.0.0 &DoubleRightTee; &#x22A8; &#8872;
U+22A9 forces Sm 0 ON AL 1.0.0 &Vdash; &#x22A9; &#8873;
U+22AA triple vertical bar right turnstile Sm 0 ON AL 1.0.0 &Vvdash; &#x22AA; &#8874;
U+22AB double vertical bar double right turnstile Sm 0 ON AL 1.0.0 &VDash; &#x22AB; &#8875;
U+22AC does not prove Sm 0 ON AL 1.0.0 &nvdash; &#x22AC; &#8876;
U+22AD not true Sm 0 ON AL 1.0.0 &nvDash; &#x22AD; &#8877;
U+22AE does not force Sm 0 ON AL 1.0.0 &nVdash; &#x22AE; &#8878;
U+22AF negated double vertical bar double right turnstile Sm 0 ON AL 1.0.0 &nVDash; &#x22AF; &#8879;
U+22B0 precedes under relation Sm 0 ON AL 1.0.0 &prurel; &#x22B0; &#8880;
U+22B1 succeeds under relation Sm 0 ON AL 1.0.0 &#x22B1; &#8881;
U+22B2 normal subgroup of Sm 0 ON AL 1.0.0 &LeftTriangle; &#x22B2; &#8882;
U+22B3 contains as normal subgroup Sm 0 ON AL 1.0.0 &RightTriangle; &#x22B3; &#8883;
U+22B4 normal subgroup of or equal to Sm 0 ON AL 1.0.0 &LeftTriangleEqual; &#x22B4; &#8884;
U+22B5 contains as normal subgroup or equal to Sm 0 ON AL 1.0.0 &RightTriangleEqual; &#x22B5; &#8885;
U+22B6 original of Sm 0 ON AL 1.0.0 &origof; &#x22B6; &#8886;
U+22B7 image of Sm 0 ON AL 1.0.0 &imof; &#x22B7; &#8887;
U+22B8 multimap Sm 0 ON AL 1.0.0 &mumap; &#x22B8; &#8888;
U+22B9 hermitian conjugate matrix Sm 0 ON AL 1.0.0 &hercon; &#x22B9; &#8889;
U+22BA intercalate Sm 0 ON AL 1.0.0 &intercal; &#x22BA; &#8890;
U+22BB xor Sm 0 ON AL 1.0.0 &veebar; &#x22BB; &#8891;
U+22BC nand Sm 0 ON AL 1.0.0 &#x22BC; &#8892;
U+22BD nor Sm 0 ON AL 1.0.0 &barvee; &#x22BD; &#8893;
U+22BE right angle with arc Sm 0 ON AL 1.0.0 &angrtvb; &#x22BE; &#8894;
U+22BF right triangle Sm 0 ON AI 1.0.0 &lrtri; &#x22BF; &#8895;
U+22C0 n-ary logical and Sm 0 ON AL 1.0.0 &Wedge; &#x22C0; &#8896;
U+22C1 n-ary logical or Sm 0 ON AL 1.0.0 &xvee; &#x22C1; &#8897;
U+22C2 n-ary intersection Sm 0 ON AL 1.0.0 &Intersection; &#x22C2; &#8898;
U+22C3 n-ary union Sm 0 ON AL 1.0.0 &xcup; &#x22C3; &#8899;
U+22C4 diamond operator Sm 0 ON AL 1.0.0 &diam; &#x22C4; &#8900;
U+22C5 dot operator Sm 0 ON AL 1.0.0 &sdot; &#x22C5; &#8901;
U+22C6 star operator Sm 0 ON AL 1.0.0 &Star; &#x22C6; &#8902;
U+22C7 division times Sm 0 ON AL 1.0.0 &divideontimes; &#x22C7; &#8903;
U+22C8 bowtie Sm 0 ON AL 1.0.0 &bowtie; &#x22C8; &#8904;
U+22C9 left normal factor semidirect product Sm 0 ON AL 1.0.0 &ltimes; &#x22C9; &#8905;
U+22CA right normal factor semidirect product Sm 0 ON AL 1.0.0 &rtimes; &#x22CA; &#8906;
U+22CB left semidirect product Sm 0 ON AL 1.0.0 &leftthreetimes; &#x22CB; &#8907;
U+22CC right semidirect product Sm 0 ON AL 1.0.0 &rightthreetimes; &#x22CC; &#8908;
U+22CD reversed tilde equals Sm 0 ON AL 1.0.0 &bsime; &#x22CD; &#8909;
U+22CE curly logical or Sm 0 ON AL 1.0.0 &cuvee; &#x22CE; &#8910;
U+22CF curly logical and Sm 0 ON AL 1.0.0 &curlywedge; &#x22CF; &#8911;
U+22D0 double subset Sm 0 ON AL 1.0.0 &Sub; &#x22D0; &#8912;
U+22D1 double superset Sm 0 ON AL 1.0.0 &Sup; &#x22D1; &#8913;
U+22D2 double intersection Sm 0 ON AL 1.0.0 &Cap; &#x22D2; &#8914;
U+22D3 double union Sm 0 ON AL 1.0.0 &Cup; &#x22D3; &#8915;
U+22D4 pitchfork Sm 0 ON AL 1.0.0 &fork; &#x22D4; &#8916;
U+22D5 equal and parallel to Sm 0 ON AL 1.0.0 &epar; &#x22D5; &#8917;
U+22D6 less-than with dot Sm 0 ON AL 1.0.0 &ltdot; &#x22D6; &#8918;
U+22D7 greater-than with dot Sm 0 ON AL 1.0.0 &gtdot; &#x22D7; &#8919;
U+22D8 very much less-than Sm 0 ON AL 1.0.0 &Ll; &#x22D8; &#8920;
U+22D9 very much greater-than Sm 0 ON AL 1.0.0 &ggg; &#x22D9; &#8921;
U+22DA less-than equal to or greater-than Sm 0 ON AL 1.0.0 &LessEqualGreater; &#x22DA; &#8922;
U+22DB greater-than equal to or less-than Sm 0 ON AL 1.0.0 &GreaterEqualLess; &#x22DB; &#8923;
U+22DC equal to or less-than Sm 0 ON AL 1.0.0 &#x22DC; &#8924;
U+22DD equal to or greater-than Sm 0 ON AL 1.0.0 &#x22DD; &#8925;
U+22DE equal to or precedes Sm 0 ON AL 1.0.0 &curlyeqprec; &#x22DE; &#8926;
U+22DF equal to or succeeds Sm 0 ON AL 1.0.0 &curlyeqsucc; &#x22DF; &#8927;
U+22E0 does not precede or equal to Sm 0 ON AL 1.0.0 &NotPrecedesSlantEqual; &#x22E0; &#8928;
U+22E1 does not succeed or equal to Sm 0 ON AL 1.0.0 &NotSucceedsSlantEqual; &#x22E1; &#8929;
U+22E2 not square image of or equal to Sm 0 ON AL 1.0.0 &NotSquareSubsetEqual; &#x22E2; &#8930;
U+22E3 not square original of or equal to Sm 0 ON AL 1.0.0 &NotSquareSupersetEqual; &#x22E3; &#8931;
U+22E4 square image of or not equal to Sm 0 ON AL 1.0.0 &#x22E4; &#8932;
U+22E5 square original of or not equal to Sm 0 ON AL 1.0.0 &#x22E5; &#8933;
U+22E6 less-than but not equivalent to Sm 0 ON AL 1.0.0 &lnsim; &#x22E6; &#8934;
U+22E7 greater-than but not equivalent to Sm 0 ON AL 1.0.0 &gnsim; &#x22E7; &#8935;
U+22E8 precedes but not equivalent to Sm 0 ON AL 1.0.0 &precnsim; &#x22E8; &#8936;
U+22E9 succeeds but not equivalent to Sm 0 ON AL 1.0.0 &succnsim; &#x22E9; &#8937;
U+22EA not normal subgroup of Sm 0 ON AL 1.0.0 &ntriangleleft; &#x22EA; &#8938;
U+22EB does not contain as normal subgroup Sm 0 ON AL 1.0.0 &NotRightTriangle; &#x22EB; &#8939;
U+22EC normal subgroup of or equal to Sm 0 ON AL 1.0.0 &NotLeftTriangleEqual; &#x22EC; &#8940;
U+22ED contains as normal subgroup or equal to Sm 0 ON AL 1.0.0 &NotRightTriangleEqual; &#x22ED; &#8941;
U+22EE vertical ellipsis Sm 0 ON AL 1.0.0 &vellip; &#x22EE; &#8942;
U+22EF middle horizontal ellipsis Sm 0 ON IN 1.0.0 &ctdot; &#x22EF; &#8943;
U+22F0 up right diagonal ellipsis Sm 0 ON AL 1.0.0 &utdot; &#x22F0; &#8944;
U+22F1 down right diagonal ellipsis Sm 0 ON AL 1.0.0 &dtdot; &#x22F1; &#8945;
U+22F2 element of with long horizontal stroke Sm 0 ON AL 3.2 &disin; &#x22F2; &#8946;
U+22F3 element of with vertical bar at end of horizontal stroke Sm 0 ON AL 3.2 &isinsv; &#x22F3; &#8947;
U+22F4 small element of with vertical bar at end of horizontal stroke Sm 0 ON AL 3.2 &isins; &#x22F4; &#8948;
U+22F5 element of with dot above Sm 0 ON AL 3.2 &isindot; &#x22F5; &#8949;
U+22F6 element of with overbar Sm 0 ON AL 3.2 &notinvc; &#x22F6; &#8950;
U+22F7 small element of with overbar Sm 0 ON AL 3.2 &notinvb; &#x22F7; &#8951;
U+22F8 element of with underbar Sm 0 ON AL 3.2 &#x22F8; &#8952;
U+22F9 element of with two horizontal strokes Sm 0 ON AL 3.2 &isinE; &#x22F9; &#8953;
U+22FA contains with long horizontal stroke Sm 0 ON AL 3.2 &nisd; &#x22FA; &#8954;
U+22FB contains with vertical bar at end of horizontal stroke Sm 0 ON AL 3.2 &xnis; &#x22FB; &#8955;
U+22FC small contains with vertical bar at end of horizontal stroke Sm 0 ON AL 3.2 &nis; &#x22FC; &#8956;
U+22FD contains with overbar Sm 0 ON AL 3.2 &notnivc; &#x22FD; &#8957;
U+22FE small contains with overbar Sm 0 ON AL 3.2 &notnivb; &#x22FE; &#8958;
U+22FF z notation bag membership Sm 0 ON AL 3.2 &#x22FF; &#8959;

Компактная таблица

Математические операторы[1]
Официальная таблица символов Консорциума Юникода (PDF)
  0 1 2 3 4 5 6 7 8 9 A B C D E F
U+220x
U+221x
U+222x
U+223x
U+224x
U+225x
U+226x
U+227x
U+228x
U+229x
U+22Ax
U+22Bx
U+22Cx
U+22Dx
U+22Ex
U+22Fx
Примечания
1.^ По состоянию на версию 15.0.

История

В таблице указаны документы, отражающие процесс формирования блока.

См. также

Примечания

  1. Unicode character database. The Unicode Standard. Дата обращения: 30 января 2017. Архивировано 25 декабря 2018 года.
  2. Enumerated Versions of The Unicode Standard. The Unicode Standard. Дата обращения: 30 января 2017. Архивировано 25 декабря 2018 года.