Длинная линияДлинная линия — модель линии передачи, продольный размер (длина) которой превышает длину волны, распространяющейся в ней (либо сравнима с длиной волны), а поперечные размеры (например, расстояние между проводниками, образующими линию) значительно меньше длины волны. С точки зрения теории электрических цепей длинная линия относится к четырёхполюсникам. Характерной особенностью длинной линии является проявление интерференции двух волн, распространяющихся навстречу друг другу. Одна из этих волн создается подключенным ко входу линии генератором электромагнитных колебаний и называется падающей. Другая волна называется отражённой и возникает из-за частичного отражения падающей волны от нагрузки, подключенной к выходу (противоположному генератору концу) линии. Всё разнообразие колебательных и волновых процессов, происходящих в длинной линии, определяется соотношениями амплитуд и фаз падающей и отраженной волн. Анализ процессов упрощается, если длинная линия является регулярной, то есть такой, у которой в продольном направлении неизменны поперечное сечение и электромагнитные свойства (εr, μr, σ) заполняющих сред[1]. Дифференциальные уравнения длинной линииПервичные параметрыИз электродинамики известно, что линия передачи может быть охарактеризована её погонными параметрами:
Погонные сопротивление и проводимость G1 зависят от проводимости материала проводов и качества диэлектрика, окружающего эти провода, соответственно. Согласно закону Джоуля — Ленца, чем меньше тепловые потери в металле проводов и в диэлектрике, тем меньше погонное сопротивление металла R1 и меньше погонная проводимость диэлектрика G1. (Уменьшение активных потерь в диэлектрике означает увеличение его сопротивления, так как активные потери в диэлектрике — это токи утечки. Для модели используется обратная величина — погонная проводимость G1.) Погонные индуктивность L1 и ёмкость C1 определяются формой и размерами поперечного сечения проводов, а также расстоянием между ними. А и — погонные комплексные сопротивление и проводимость линии, зависящие от частоты . Выделим из линии элементарный участок бесконечно малой длины dz и рассмотрим его эквивалентную схему. Эквивалентная схема участка длинной линииЗначения параметров схемы определяются соотношениями:
Используя эквивалентную схему, запишем выражения для приращений напряжения и тока: Подставляя сюда значения параметров схемы из (1), получаем: Из последних соотношений находим дифференциальные уравнения линии. Эти уравнения определяют связь между током и напряжением в любом сечении линии и называются телеграфными уравнениями длинной линии: Телеграфные уравнения
СледствияРешим телеграфные уравнения относительно напряжения и тока. Для этого продифференцируем их по z:
При этом учтем условие регулярности линии: Условие регулярности линии
Данные соотношения являются математическим определением регулярности длинной линии. Смысл соотношения (4) состоит в неизменности вдоль линии её погонных параметров. Подставляя в (3) значения производных напряжения и тока из (2), после преобразований получаем: Однородные волновые уравнения длинной линии
где — коэффициент распространения волны в линии. Соотношения (5) называются однородными волновыми уравнениями длинной линии. Их решения известны и могут быть записаны в виде:
где AU, BU и AI, BI — коэффициенты, имеющие единицы измерения напряжения и тока соответственно, смысл которых будет ясен ниже. Решения волновых уравнений в виде (6) имеют весьма характерный вид: первое слагаемое в этих решениях представляет собой отраженную волну напряжения или тока, распространяющуюся от нагрузки к генератору, второе слагаемое — падающую волну, распространяющуюся от генератора к нагрузке. Таким образом, коэффициенты AU, AI представляют собой комплексные амплитуды падающих волн напряжения и тока соответственно, а коэффициенты BU, BI — комплексные амплитуды отраженных волн напряжения и тока соответственно. Так как часть мощности, передаваемой по линии, может поглощаться в нагрузке, то амплитуды отраженных волн не должны превышать амплитуды падающих: Направление распространения волн в (6) определяется знаком в показателях степени экспонент: плюс — волна распространяется в отрицательном направлении оси z; минус — в положительном направлении оси z (см. рис. 1). Так, например, для падающих волн напряжения и тока можно записать:
Коэффициент распространения волны в линии γ в общем случае является комплексной величиной и может быть представлен в виде:
где α — коэффициент затухания волны[2] в линии; β — коэффициент фазы[3]. Тогда соотношение (7) можно переписать в виде:
Так как при распространении падающей волны на длину волны в линии λЛ фаза волны изменяется на 2π, то коэффициент фазы можно связать с длиной волны λЛ соотношением
При этом фазовая скорость волны в линии VФ определяется через коэффициент фазы:
Определим коэффициенты A и B, входящие в решения (6) волновых уравнений, через значения напряжения UН и тока IН на нагрузке. Это является оправданным, так как напряжение и ток на нагрузке практически всегда можно измерить с помощью измерительных приборов. Воспользуемся первым из телеграфных уравнений (2) и подставим в него напряжение и ток из (6). Тогда получим: Сравнив коэффициенты при экспонентах с одинаковыми показателями степеней, получим:
где — волновое сопротивление линии[4]. Перепишем (6) с учётом (12):
Для определения коэффициентов A и B в этих уравнениях воспользуемся условиями в начале линии z = 0:
Тогда из (13) при z = 0 найдем
Подставив полученные значения коэффициентов из (14) в (13), после преобразований получим:
При выводе (15) учтены определения гиперболических синуса и косинуса[5]. Соотношения для напряжения и тока (15) так же, как и (6), являются решениями однородных волновых уравнений. Их отличие состоит в том, что напряжение и ток в линии в соотношении (6) определены через амплитуды падающей и отраженной волн, а в (15) — через напряжение и ток на нагрузке. Рассмотрим простейший случай, когда напряжение и ток в линии определяются только падающей волной, а отраженная волна отсутствует[6]. Тогда в (6) следует положить BU = 0, BI = 0:
Распределение поля падающей волныНа рис.3. представлены эпюры изменения амплитуды |U| и фазы φU напряжения вдоль линии. Эпюры изменения амплитуды и фазы тока имеют такой же вид. Из рассмотрения эпюр следует, что при отсутствии в линии потерь (α[2] = 0) амплитуда напряжения в любом сечении линии остается одной и той же. При наличии потерь в линии (α[2] > 0) часть переносимой мощности преобразуется в тепло (нагревание проводов линии и окружающего их диэлектрика). По этой причине амплитуда напряжения падающей волны экспоненциально убывает в направлении распространения. Фаза напряжения падающей волны φU = β z изменяется по линейному закону и уменьшается по мере удаления от генератора. Рассмотрим изменение амплитуды и фазы, например, напряжения при наличии падающей и отраженной волн. Для упрощения положим, что потери в линии отсутствуют, то есть α[2] = 0. Тогда напряжение в линии можно представить в виде:
где — комплексный коэффициент отражения по напряжению. Комплексный коэффициент отражения по напряжениюХарактеризует степень согласования линии передачи с нагрузкой. Модуль коэффициента отражения изменяется в пределах:
Соотношение (16) представляет собой сумму падающей и отраженной волн. Отобразим напряжение на комплексной плоскости в виде векторной диаграммы, каждый из векторов которой определяет падающую, отраженную волны и результирующее напряжение (рис. 4). Из диаграммы видно, что существуют такие поперечные сечения линии, в которых падающая и отраженная волны складываются в фазе. Напряжение в этих сечениях достигает максимума, величина которого равна сумме амплитуд падающей и отраженной волн:
Кроме того, существуют такие поперечные сечения линии, в которых падающая и отраженная волны складываются в противофазе. При этом напряжение достигает минимума:
Если линия нагружена на сопротивление, для которого |Г| = 1, то есть амплитуда падающей и отраженной волн равны |BU| = |AU|, то в этом случае Umax = 2|AU|, а Umin = 0. Напряжение в такой линии изменяется от нуля до удвоенной амплитуды падающей волны. На рис. 5 представлены эпюры изменения амплитуды и фазы напряжения вдоль линии при наличии отраженной волны. Коэффициенты бегущей и стоячей волныПо эпюре напряжения судят о степени согласования линии с нагрузкой. Для этого вводятся понятия коэффициента бегущей волны — kБВ и коэффициента стоячей волны kСВ:
Эти коэффициенты, судя по определению, изменяются в пределах:
На практике наиболее часто используется понятие коэффициента стоячей волны, так как современные измерительные приборы (панорамные измерители kСВ) на индикаторных устройствах отображают изменение именно этой величины в определенной полосе частот. Входное сопротивление длинной линииВходное сопротивление линии является важной характеристикой, которое определяется в каждом сечении линии как отношение напряжения к току в этом сечении:
Так как напряжение и ток в линии изменяются от сечения к сечению, то и входное сопротивление линии изменяется относительно её продольной координаты z. При этом говорят о трансформирующих свойствах линии, а саму линию рассматривают как трансформатор сопротивлений. Подробнее свойство линии трансформировать сопротивления будет рассмотрено ниже. Режимы работы длинной линииРазличают три режима работы линии: Режим бегущей волныРежим бегущей волны характеризуется наличием только падающей волны, распространяющейся от генератора к нагрузке. Отраженная волна отсутствует. Мощность, переносимая падающей волной, полностью выделяется в нагрузке. В этом режиме BU = 0, | Г | = 0, kсв = kбв = 1[7]. Режим стоячей волныРежим стоячей волны характеризуется тем, что амплитуда отраженной волны равна амплитуде падающей BU = AU то есть энергия падающей волны полностью отражается от нагрузки и возвращается обратно в генератор. В этом режиме, | Г | = 1, kсв = , kбв = 0[7]. Режим смешанных волнВ режиме смешанных волн амплитуда отраженной волны удовлетворяет условию 0 < BU < AU то есть часть мощности падающей волны теряется в нагрузке, а остальная часть в виде отраженной волны возвращается обратно в генератор. При этом 0 < | Г | < 1, 1 < kсв < , 0 < kбв < 1 Линия без потерьВ линии без потерь погонные параметры R1 = 0 и G1 = 0. Поэтому для коэффициента распространения γ и волнового сопротивления W получим:
С учётом этого выражения для напряжения и тока (15) примут вид:
При выводе этих соотношений учтены особенности[8] гиперболических функций[5]. Рассмотрим конкретные примеры работы линии без потерь на простейшие нагрузки. Разомкнутая линияВ этом случае ток, протекающий через нагрузку равен нулю (IН = 0), поэтому выражения для напряжения, тока и входного сопротивления в линии принимают вид:
На рис.6 эти зависимости проиллюстрированы графически. Из соотношений (22) и графиков следует:
Замкнутая линияВ этом случае напряжение на нагрузке равно нулю (UН = 0), поэтому напряжение, ток и входное сопротивление в линии принимают вид:
На рис.7 эти зависимости проиллюстрированы графически. Используя результаты предыдущего раздела, нетрудно самостоятельно сделать выводы о трансформирующих свойствах короткозамкнутой линии. Отметим лишь, что в замкнутой линии также устанавливается режим стоячей волны. Отрезок короткозамкнутой линии, длиной меньше λЛ/4 имеет индуктивный характер входного сопротивления, а при длине λЛ/4 такая линия имеет бесконечно большое входное сопротивление на рабочей частоте[9]. Ёмкостная нагрузкаКак следует из анализа работы разомкнутой линии, каждой ёмкости C на данной частоте ω можно поставить в соответствие отрезок разомкнутой линии длиной меньше λЛ/4. Ёмкость C имеет ёмкостное сопротивление . Приравняем величину этого сопротивления к входному сопротивлению разомкнутой линии длиной l < λЛ/4:
Отсюда находим длину линии, эквивалентную по входному сопротивлению ёмкости C:
Зная эпюры напряжения, тока и входного сопротивления разомкнутой линии, восстанавливаем их для линии, работающей на ёмкость (рис.8). Из эпюр следует, что в линии, работающей на ёмкость, устанавливается режим стоячей волны. При изменений ёмкости эпюры сдвигаются вдоль оси z. В частности, при увеличении ёмкости ёмкостное сопротивление уменьшается, напряжение на ёмкости падает и все эпюры сдвигаются вправо, приближаясь к эпюрам, соответствующим короткозамкнутой линии. При уменьшении ёмкости эпюры сдвигаются влево, приближаясь к эпюрам, соответствующим разомкнутой линии. Индуктивная нагрузкаКак следует из анализа работы замкнутой линии, каждой индуктивности L на данной частоте ω можно поставить в соответствие отрезок замкнутой линии длиной меньше λЛ/4. Индуктивность L имеет индуктивное сопротивление iXЛ = iωL. Приравняем это сопротивление к входному сопротивлению замкнутой линии длиной λЛ/4:
Отсюда находим длину линии l, эквивалентную по входному сопротивлению индуктивности L:
Зная эпюры напряжения, тока и входного сопротивления замкнутой на конце линии, восстанавливаем их для линии, работающей на индуктивность (рис. 9). Из эпюр следует, что в линии, работающей на индуктивность, также устанавливается режим стоячей волны. Изменение индуктивности приводит к сдвигу эпюр вдоль оси z. Причем с увеличением L эпюры сдвигаются вправо, приближаясь к эпюрам холостого хода, а с уменьшением L — влево по оси z, стремясь к эпюрам короткого замыкания. Активная нагрузкаВ этом случае ток и напряжение на нагрузке RН связаны соотношением UН = IНRН[10]. Выражения для напряжения и тока в линии (21) принимают вид:
Рассмотрим работу такой линии на примере анализа напряжения. Найдем из (23) амплитуду напряжения в линии:
Отсюда следует, что можно выделить три случая:
В первом случае из (24) следует |U| = UН, то есть распределение амплитуды напряжения вдоль линии остается постоянным, равным амплитуде напряжения на нагрузке. Это соответствует режиму бегущей волны в линии. Комплексная нагрузкаСм. такжеПримечания
|
Portal di Ensiklopedia Dunia