Телегра́фные уравне́ния — пара линейных дифференциальных уравнений, описывающих распределение напряжения и тока по времени и расстоянию в линиях электрической связи. Уравнения были составлены Оливером Хевисайдом, разработавшим в 1880-х годах модель линии электрической связи.
Теория Хевисайда применима к линиям передачи электрического тока всех частот, включая телеграфные, телефонные и более высокочастотные линии, а также силовые линии электропередачи и линии передачи постоянного тока.
Телеграфные уравнения, как и все другие уравнения, описывающие электрические явления, могут быть сведены к частному случаю уравнений Максвелла. С практической точки зрения предполагается, что проводники состоят из бесконечной цепи четырёхполюсников, каждый из которых представляет собой бесконечно короткий участок линии со следующими параметрами:
Сопротивление проводников представлено в виде продольного резистора (выражается в ом на единицу длины).
Ёмкость между двумя проводниками представлена в виде поперечного конденсатора (фарад на единицу длины).
Проводимость диэлектрического материала (изоляции), разделяющего два проводника, представлена в виде поперечного резистора (сименс на единицу длины). В модели этот резистор имеет сопротивление Ом.
Параметры и показаны на рисунке отнесёнными к одному проводнику, но фактически представляют соответствующее суммарное значение, относящееся к обоим проводникам. Распределённые по бесконечной цепи четырёхполюсников параметры , , , называются первичными параметрами линии. Также можно использовать обозначения , , , , чтобы подчеркнуть, что значения являются производными по координате.
Уравнения
Линия без потерь
Когда элементы и малы, их значением можно пренебречь, линия электрической связи при этом считается идеальной. В этом случае модель зависит только от элементов и , мы получаем пару дифференциальных уравнений в частных производных первого порядка, одна функция описывает распределение напряжения вдоль линии, а другая — распределение тока , обе функции зависят от координаты и времени [1][2][3][4][5][6][7]:
Эти уравнения можно совместить для получения двух отдельных волновых уравнений:
В гармоническом случае (считая, что волна синусоидальная) , уравнения упрощаются до
где — частота стационарной волны.
Если линия является бесконечно длинной или оканчивается характеристическим комплексным сопротивлением, уравнения показывают присутствие волны, распространяющейся со скоростью .
Такая скорость распространения применима к волновым явлениям и не учитывает дрейфовую скорость электрона. Другими словами, электрический импульс распространяется со скоростью, очень близкой к скорости света, несмотря на то, что сами электроны перемещаются со скоростью всего несколько сантиметров в секунду. Можно показать, что эта скорость в коаксиальной линии, сделанной из идеальных проводников, разделенных вакуумом, равна скорости света[8][9].
Линия с потерями
Когда элементами и нельзя пренебречь, первоначальные дифференциальные уравнения, описывающие элементарный участок, принимают вид:
Дифференцируя первое уравнение по и второе по , после проведения некоторых алгебраических преобразований, мы получим пару гиперболических дифференциальных уравнений в частных производных, каждое из которых содержит по одной неизвестной:
Если потери линии малы (малые и ), сигнал будет затухать с увеличением расстояния как , где .
Эти уравнения похожи на уравнение однородной волны с дополнительными условиями над и и их первыми производными. Дополнительные условия вызывают затухание и рассеяние сигнала в течение времени и с увеличением расстояния.
Направление распространения сигнала
Волновые уравнения, описанные выше, учитывают, что распространение волны может быть прямым и обратным. Учитывая упрощение линии без потерь (полагая и ), решение может быть представлено в виде
представляет волну, идущую в положительном направлении оси (слева направо), представляет волну, идущую справа налево. Можно заметить, что мгновенное значение напряжения в любой точке линии является суммой напряжений, вызванных обеими волнами.
Так как зависимость между током и напряжением описывается телеграфными уравнениями, можно записать:
где — волновое сопротивление линии передачи, которое для линии без потерь можно найти как
Решение телеграфных уравнений
Решение телеграфных уравнений есть, например, на с. 348 в примере 80 (плюс решение примера 79 на с. 347—348) в книге[10].