Дифференциальная приватностьДифференциальная приватность — совокупность методов, которые обеспечивают максимально точные запросы в статистическую базу данных при одновременной минимизации возможности идентификации отдельных записей в ней. ВведениеДифференциальная приватность — математическое определение потери конфиденциальных данных отдельных лиц, когда их личная информация используется для создания продукта. Этот термин был введён Синтией Дворк в 2006 году[1], но он же используется в более ранней публикации Дворк, Фрэнка Макшерри[фр.], Коби Ниссима[фр.] и Адама Д. Смита[фр.][2]. Работа основана в частности на исследованиях Ниссима и Ирит Динур[3][4], которые показали, что невозможно публиковать информацию из частной статической базы данных, не раскрывая некоторую часть приватной информации, и что вся база данных может быть раскрыта путём публикации результатов достаточно небольшого числа запросов[4]. После проведения исследования стало понятно, что обеспечение конфиденциальности в статистических базах данных с использованием существующих методов было невозможным, и, как следствие, появилась необходимость в новых, которые бы ограничивали риски, связанные с потерей частной информации, содержащихся в статистической базе данных. Как итог были созданы новые методы, позволяющие в большинстве случаев предоставить точную статистику из базы данных, и при этом обеспечивающие высокий уровень конфиденциальности[5][6]. Принцип и иллюстрацияДифференциальная приватность основана на введении случайности в данные. Простой пример, разработанный в социальных науках[7], заключается в том, чтобы попросить человека ответить на вопрос «Есть ли у вас атрибут А?» в соответствии со следующей процедурой:
Конфиденциальность возникает, так как невозможно по ответу точно узнать, обладает ли человек данным атрибутом. Но тем не менее эти данные значительны, так как положительные ответы дают четверть от тех людей, у которых нет этого атрибута, и три четверти от тех, кто на самом деле им обладают. Таким образом, если p — истинная доля людей с A, то мы ожидаем получить (1/4) (1- p) + (3/4) p = (1/4) + p / 2 положительных ответов. Следовательно, можно оценить р. Формальное определение и пример использованияПусть ε — положительное действительное число и A — вероятностный алгоритм, который принимает на вход набор данных (представляет действия доверенной стороны, обладающей данными). Образ A обозначим imA. Алгоритм A является ε-дифференциально приватным, если для всех наборов данных и , которые отличаются одним элементом (то есть данными одного человека), а также всех подмножеств S множества imA:
где P — вероятность. В соответствии с этим определением дифференциальная приватность является условием механизма публикации данных (то есть определяется доверенной стороной, выпускающей информацию о наборе данных), а не самим набором. Интуитивно это означает, что для любых двух схожих наборов данных, дифференциально-приватный алгоритм будет вести себя примерно одинаково на обоих наборах. Определение также даёт сильную гарантию того, что присутствие или отсутствие индивидуума не повлияет на окончательный вывод алгоритма. Например, предположим, что у нас есть база данных медицинских записей где каждая запись представляет собой пару (Имя, X), где является нулём или единицей, обозначающим, имеет ли человек гастрит или нет:
Теперь предположим, что злонамеренный пользователь (часто называемый злоумышленником) хочет найти, имеет ли Михаил гастрит или нет. Также предположим, что он знает, в какой строке находится информация о Михаиле в базе данных. Теперь предположим, что злоумышленнику разрешено использовать только конкретную форму запроса , который возвращает частичную сумму первых строк столбца в базе данных. Чтобы узнать, есть ли гастрит у Михаила, злоумышленник выполняет запросы: и , затем вычисляет их разницу. В данном примере, , а , поэтому их разность равна . Это значит, что поле «Наличие гастрита» в строке Михаила должно быть равно . Этот пример показывает, как индивидуальная информация может быть скомпрометирована даже без явного запроса данных конкретного человека. Продолжая этот пример, если мы построим набор данных , заменив (Михаил, 1) на (Михаил, 0), то злоумышленник сможет отличить от путём вычисления для каждого набора данных. Если бы злоумышленник получал значения через ε-дифференциально приватный алгоритм, для достаточно малого ε, то он не смог бы отличить два набора данных. Пример с монеткой, описанный выше является -дифференциально приватным[8]. Граничные случаиСлучай, когда ε = 0, является идеальным для сохранения конфиденциальности, поскольку наличие или отсутствие любой информации о любом человеке в базе данных никак не влияет на результат алгоритма, однако такой алгоритм является бессмысленным с точки зрения полезной информации, так как даже при нулевом количестве людей он будет давать такой же или подобный результат. Если устремить ε в бесконечность, то любой вероятностный алгоритм будет подходить под определение, поскольку неравенство — выполняется всегда. ЧувствительностьПусть — положительное целое число, — набор данных и — функция. Чувствительность [9] функции, обозначаемая , определяется формулой по всем парам наборов данных и в , отличающихся не более чем одним элементом и где обозначает норму. На выше приведённом примере медицинской базы данных, если мы рассмотрим чувствительность функции , то она равна , так как изменение любой из записей в базе данных приводит к тому, что либо изменится на либо не изменится. Механизм ЛапласаВ связи с тем, что дифференциальная приватность является вероятностной концепцией, любой её метод обязательно имеет случайную составляющую. Некоторые из них, как и метод Лапласа, используют добавление контролируемого шума к функции, которую нужно вычислить. Метод Лапласа добавляет шум Лапласа, то есть шум от распределения Лапласа, который может быть выражен функцией плотности вероятности и который имеет нулевое математическое ожидание и стандартное отклонение . Определим выходную функцию как вещественнозначную функцию в виде где , а — это запрос, который мы планировали выполнить в базе данных. Таким образом можно считать непрерывной случайной величиной, где которая не более (pdf — probability density function или функция плотности вероятности). В данном случае можно обозначить фактором конфиденциальности ε. Таким образом в соответствие с определением является ε-дифференциально приватной. Если мы попытаемся использовать эту концепцию в вышеприведённом примере про наличие гастрита, то для того, чтобы была ε-дифференциальный приватной функцией, должно выполняться , поскольку ). Кроме шума Лапласа также можно использовать другие виды шума (например, гауссовский), но они могут потребовать небольшого ослабления определения дифференциальной приватности[10]. КомпозицияПоследовательное применениеЕсли мы выполним запрос в ε-дифференциально защищённой раз, и вносимый случайный шум независим для каждого запроса, тогда суммарная приватность будет (εt)-дифференциальной. В более общем случае, если есть независимых механизмов: , чьи гарантии приватности равны соответственно, то любая функция будет -дифференциально приватной[11]. Параллельная композицияКроме того, если запросы выполняются на непересекающихся подмножествах базы данных, то функция была бы -дифференциально приватной[11]. Приватность группыДифференциальная приватность в целом предназначена для защиты конфиденциальности между базами данных, которые отличаются только одной строкой. Это означает, что ни один злоумышленник с произвольной вспомогательной информацией не может узнать, представил ли какой-либо один отдельно взятый участник свою информацию. Однако это понятие можно расширить на группу, если мы хотим защитить базы данных, отличающиеся на строк, чтобы злоумышленник с произвольной вспомогательной информацией, не мог узнать, предоставили ли отдельных участников свою информацию. Это может быть достигнуто если в формуле из определения заменить на [12], тогда для D1 и D2 отличающихся на строчек Таким образом, использование параметра (ε/c) вместо ε позволяет достичь необходимого результата и защитить строк. Другими словами, вместо того, чтобы каждый элемент был ε-дифференциально приватным, теперь каждая группа из элементов являются ε-дифференциально приватной, а каждый элемент (ε/c)-дифференциально приватным. Применение дифференциальной приватности в реальных приложенияхНа сегодняшний день известно несколько видов применения дифференциальной приватности:
Примечания
Литература
|
Portal di Ensiklopedia Dunia