Граф Хватала
Граф Хватала — неориентированный граф с 12 вершинами и 24 рёбрами, открытый Вацлавом Хваталом в 1970 году. СвойстваГраф не содержит треугольников — его обхват (длина наименьшего цикла) равен четырём. Граф 4-регулярен — каждая вершина имеет в точности четыре соседа. Хроматическое число графа равно 4 — его можно раскрасить в четыре цвета, но нельзя в три. Как обнаружил Хватал, это минимальный 4-цветный 4-регулярный граф без треугольников. Меньшим 4-цветным графом без треугольников является граф Грёча, имеющий 11 вершин, но он имеет максимальную степень 5 и не регулярен. Граф не является вершинно-транзитивным — группа автоморфизмов имеет только одну орбиту вершин длиной 8 и одну длиной 4. По теореме Брукса любой -регулярный граф (за исключением нечётных циклов и клик) имеет хроматическое число, не превосходящее . Также, благодаря Эрдёшу, с 1959 известно, что для любых и существуют -цветные графы с обхватом . Исходя из этих двух результатов и некоторых примеров, включая граф Хватала, Бранко Грюнбаум в 1970 высказал гипотезу, что для любых и существует -цветный -регулярный граф с обхватом . Граф Хватала даёт решение этой гипотезы для случая = = 4. Гипотеза Грюнбаума была опровергнута для достаточно большого Йохансеном[1], который показал, что хроматическое число графов без треугольников равно , где — максимальная степень вершин, а означает «O» большое. Несмотря на это опровержение, остаётся интересной задача поиска примеров -цветных -регулярных графов с малыми значениями и большим обхватом. Альтернативная гипотеза Брюса Рида[1] утверждает, что не имеющие треугольников графы с высокой степенью вершин должны иметь существенно меньшее хроматическое число по сравнению со степенью, и более обще, что графы с максимальной степенью и максимальной кликой размера должны иметь хроматическое число:
Случай этой гипотезы следует для достаточно больших из результата Йохансена. Граф Хватала показывает, что округление вверх в гипотезе Рида существенно, поскольку для графа Хватала , что меньше хроматического числа, но становится ему равным при округлении вверх. Граф Хватала гамильтонов и играет ключевую роль в доказательстве Фляйшнера и Сабидусси [2], что проверка, можно ли раскрасить гамильтонов граф без треугольников в три цвета, является NP-полной задачей. Характеристический многочлен графа Хватала равен . Многочлен Татта графа Хватала был вычислен в 2008 году[3]. Число независимости графа равно 4. Галерея
ПримечанияЛитература
Ссылки
|
Portal di Ensiklopedia Dunia