Гравитационная энергия
Гравитацио́нная эне́ргия — потенциальная энергия системы тел (частиц), обусловленная их взаимным гравитационным тяготением. Общепринята шкала, согласно которой для любой системы тел, находящихся на конечных расстояниях, гравитационная энергия отрицательна, а для бесконечно удалённых, то есть для гравитационно не взаимодействующих тел, гравитационная энергия равна нулю. Полная энергия системы, равная сумме гравитационной и кинетической энергии, постоянна. Для изолированной системы гравитационная энергия является энергией связи. Системы с положительной полной энергией не могут быть стационарными. Гравитационная энергия играет очень важную роль на заключительных этапах эволюции звёзд, при их превращении в нейтронные звёзды и сверхновые[1]. Гравитационно-связанные системыГравитацио́нно-свя́занная систе́ма — система, в которой гравитационная энергия больше суммы всех остальных видов энергий (помимо энергии покоя). Земля, которая, как и любое небесное тело, сама является гравитационно-связанной системой, является также частью следующих гравитационно-связанных систем: Для двух тяготеющих точечных тел с массами M и m гравитационная энергия равна: где:
Этот результат получается из закона тяготения Ньютона, при условии, что для бесконечно удалённых тел гравитационная энергия равна 0. Выражение для гравитационной силы имеет вид где:
С другой стороны согласно определению потенциальной энергии Тогда: Константа в этом выражении может быть выбрана произвольно. Её обычно выбирают равной нулю, чтобы при r, стремящемуся к бесконечности, стремилось к нулю. Этот же результат верен для малого тела, находящегося вблизи поверхности большого. В этом случае R можно считать равным , где — радиус тела массой M, а h — расстояние от центра тяжести тела массой m до поверхности тела массой M. На поверхности тела M имеем: Если размеры тела много больше размеров тела , то формулу гравитационной энергии можно переписать в следующем виде: где величину называют ускорением свободного падения. При этом член не зависит от высоты поднятия тела над поверхностью и может быть исключён из выражения путём выбора соответствующей константы. Таким образом для малого тела, находящегося на поверхности большого тела справедлива следующая формула В частности, эта формула применяется для вычисления потенциальной энергии тел, находящихся вблизи поверхности Земли.
Однако, при необходимости, сингулярности можно избежать, приняв, что вся масса большего тела не сосредоточена в точке, а равномерно распределена в шаре с радиусом . При этом масса тела с его радиусом будет связана соотношением
где - средняя плотность тела. Оказывается, что в этом случае сила притяжения внутри тела будет описываться линейной зависимостью относительно (то есть она представляет собой силу упругости), а снаружи как и прежде — пропорционально обратному квадрату.
где — ускорение свободного падения у поверхности большего тела; — нормированное расстояние от центра большего тела, при этом соответствует уровню поверхности, — положению под поверхностью, а положению над поверхностью. Потенциальная энергия при этом, если принять, что в центре тела она равна нулю, будет описываться как
где — потенциальная энергия у поверхности тела. Потенциальная энергия в бесконечно удаленной точке равна . Сравнив потенциальную энергию на поверхности и в бесконечности с кинетической энергией, можно определить характерные для рассматриваемого тела скорости: — минимально необходимая скорость малого тела для того, чтобы достичь поверхности большего тела из его центра. Или максимальная скорость малого тела, брошенного вниз в вертикальный тоннель. Она же в точности равняется скорости движения по круговой орбите у поверхности большего тела (первая космическая скорость). — Минимальная скорость убегания малого тела в бесконечность с поверхности большого тела (вторая космическая скорость). — Минимальная скорость убегания малого тела в бесконечность из центра большого тела (аналог второй космической скорости при «стрельбе» малым телом из центра большего тела). Если сравнить силу тяготения с центробежной силой, то можно получить величину требуемой скорости малого тела для движения по круговой орбите вокруг центра большего тела . Из особенности тяготения внутри большего тела, малое тело движется внутри него так, как будто бы подцепленно за конец воображаемой пружины, другой конец которой прикреплён к центру тела. Если бросить с поверхности такое тело вертикально вниз в воображаемый вакуумный тоннель, проходящий через центр планеты насквозь, то оно будет совершать гармонические колебания с периодом , что для Земли равняется 5064 с или 1 час, 24 минуты, 24 секунды. Максимальная скорость при пролёте через центр тела равна первой космической. Жёсткость такой воображаемой пружины равняется . В ОТОВ общей теории относительности наряду с классическим отрицательным компонентом гравитационной энергии связи появляется положительная компонента, обусловленная гравитационным излучением, то есть полная энергия гравитирующей системы убывает во времени за счёт такого излучения. См. также
Примечания
Литература
Ссылки
|
Portal di Ensiklopedia Dunia