Первоначально взаимное расположение генов на хромосомах определяли по частоте кроссинговера (перекрёста) между ними. Впервые на возможность подобного построения генетических карт хромосом экспериментально показали в 1913—1915 годах Т. Морган, А. Стёртевант и другие сотрудники Моргана, основываясь на явлениях сцепления генов и кроссинговера[5]. С тех пор генетическое расстояние принято измерять в сантиморганах (или сантиморганидах, сокращённо — cM), при этом 1 cM соответствует частоте кроссинговера в 1 %[3].
Первым организмом, для которого была получена генетическая карта, стала чернобрюхая дрозофила (Drosophila melanogaster). В дальнейшем генетическое картирование стали осуществлять для других видов. Так, первой птицей и первым домашним животным, для которых была построена генетическая карта, стала курица. Приоритет в построении первой генетической карты курицы и её опубликовании в 1930 году[6][7] принадлежит советским русским учёным А. С. Серебровскому[8] и С. Г. Петрову[9].
Конечной целью изучения генома данного организма является интеграция его генетических, цитогенетических и физических карт[16][17][18], а также их привязка к полной геномной последовательности[19].
Также картирование генома возможно с помощью биоинформатических методов. Для этого сначала проводят секвенирование генома, полученные риды выравнивают, получают контиги и скаффолды, которые затем картируют на геном специальными программами картировщиками.
Генетическое и физическое картирование
Возможность картирования основана на теоретическом постоянстве процента кроссинговера между определёнными генами. Однако при таком методе генетического картирования физическое расстояние между генами нередко отличается от их генетического расстояния, так как кроссинговер происходит не с одинаковой вероятностью в разных участках хромосом. При использовании современных методов генетического картирования расстояние между генами измеряется в тысячах пар нуклеотидов (т. п. н.) и соответствует физическому.
При создании генетической карты устанавливают последовательности расположения генетических маркеров (в этом качестве использовали различные полиморфные локусы ДНК, то есть наследуемые вариации в структуре ДНК) по длине всех хромосом с определённой плотностью, то есть на достаточно близком расстоянии друг от друга[3]. Относительно этих маркеров можно картировать и собственно гены, определяя их положение на карте той или иной хромосомы[20].
Картирование генома человека
С 1990 по 2003 год, благодаря программе «Геном человека», была получена целостная картина человеческого генома, основанная на его генетических и физических картах. Но генетический материал, использованный в проекте генома человека был получен от нескольких добровольцев. Поэтому собранный геном был чем-то усреднёнными между геномами всех добровольцев. Однако уже в 2022 году получилось собрать полноценный геном высокого качества одного человека. Генетическая карта маркерных последовательностей призвана облегчить картирование всех генов человека[3], особенно генов наследственных болезней, что является одной из основных целей указанной программы. В ходе её реализации за относительно короткое время было генетически картировано несколько тысяч генов.
Генетические карты человека используются ныне в медицине при диагностике ряда тяжёлых наследственных заболеваний человека.
↑Арефьев В. А., Лисовенко Л. А. Англо-русский толковый словарь генетических терминов / Науч. ред. Л. И. Патрушев.генетическая карта // Биология: Молекулярная биология и генетика. Толковый словарь (рус.). — 1995.
↑Morgan T. H., Sturtevant A. H., Muller H. J., Bridges C. B. The Mechanism of Mendelian Heredity. — Revised edn. — New York, NY, USA: Henry Holt and Company[англ.], 1922. — 384 p. (англ.) (Дата обращения: 23 марта 2015) Архивировано 20 марта 2008 года.
↑Серебровский А. С., Петров С. Г. К составлению плана хромосом домашней курицы // Журнал экспериментальной биологии. — 1930. — Т. 6. — Вып. 3. — С. 157—180.
↑См. рисунок,Архивная копия от 24 сентября 2015 на Wayback Machine изображающий карту Серебровского и Петрова, который был опубликован в статье «К составлению плана хромосом домашней курицы» (1930). (Дата обращения: 15 февраля 2015) Архивированная копия (неопр.). Дата обращения: 23 марта 2015. Архивировано 15 февраля 2015 года.
↑Александров А. А., Ковалёв П. В.Цитогенетические хромосомные карты (неопр.). База знаний по молекулярной и общей биологии человека. М.: HUMBIO; ООО «Лайт Телеком». Дата обращения: 23 марта 2015. Архивировано 23 марта 2015 года.
↑Ren C. W., Lee M.-K., Yan B., Ding K., Cox B., Romanov M. N., Price J. A., Dodgson J. B., Zhang H.-B.A BAC-based physical map of the chicken genome // Genome Research. — 2003. — Vol. 13. — No. 12. — P. 2754—2758. (англ.) (Дата обращения: 15 февраля 2015) Архивировано 15 февраля 2015 года.
↑Wallis J. W., Aerts J., Groenen M. A., Crooijmans R. P., Layman D., Graves T. A., Scheer D. E., Kremitzki C., Fedele M. J., Mudd N. K., Cardenas M., Higginbotham J., Carter J., McGrane R., Gaige T., Mead K., Walker J., Albracht D., Davito J., Yang S. P., Leong S., Chinwalla A., Sekhon M., Wylie K., Dodgson J., Romanov M. N., Cheng H., de Jong P. J., Osoegawa K., Nefedov M., Zhang H., McPherson J. D., Krzywinski M., Schein J., Hillier L., Mardis E. R., Wilson R. K., Warren W. C.A physical map of the chicken genome (англ.) // Nature : журнал. — London, UK: Nature Publishing Group, 2004. — Vol. 432, no. 7018. — P. 793—800. — ISSN1476-4687. — doi:10.1038/nature03030. — PMID15592415. Архивировано 15 марта 2015 года. (Дата обращения: 15 марта 2015)
↑Dodgson J. B., Romanov M. N., Sizemore F. G., Price J. A. (5 февраля 2003). Integration of genetic and physical maps of the chicken genome. Conference “Advances in Genome Biology and Technology, in cooperation with Automation in Mapping and DNA Sequencing”, Марко-Айленд (Флорида)[англ.], February 5—8, 2003. Marco Island, FL, USA: Advances in Genome Biology and Technology. p. 25. Архивировано из оригинала 2 апреля 2015. Дата обращения: 23 марта 2015.{{cite conference}}: Википедия:Обслуживание CS1 (множественные имена: authors list) (ссылка) (англ.)