Выпуклая криваяВыпуклая кривая — кривая на евклидовой плоскости, которая лежит по одну сторону от любой касательной прямой. Граница ограниченного выпуклого множества всегда является выпуклой кривой. ОпределенияОпределение с помощью опорных прямыхЛюбая прямая делит евклидову плоскость на две полуплоскости, в объединении дающие всю плоскость, а пересечение которых совпадает с , кривая «лежит по одну сторону от », если она полностью содержится в одной из этих полуплоскостей. Плоская кривая называется выпуклой, если она лежит по одну сторону от любой её касательной прямой[1]. Другими словами, выпуклая кривая является кривой, которая имеет опорную прямую в каждой точке кривой. Определение с помощью выпуклых множествВыпуклую кривую можно определить как границу выпуклого множества евклидовой плоскости. Это означает, что выпуклая кривая всегда замкнута (то есть не имеет конечных точек)[2]. Иногда используется более слабое определение, в котором выпуклая кривая является подмножеством границы выпуклого множества. В этом варианте выпуклая кривая может иметь конечные точки. Строго выпуклая криваяСтрого выпуклая кривая — выпуклая кривая, не содержащая отрезков. Эквивалентно, строго выпуклая кривая — это кривая, которая пересекает любую прямую максимум в двух точках[3][4], или простая замкнутая кривая в выпуклой позиции[англ.], что означает, что никакая точка кривой не может быть представлена в виде выпуклой комбинации любого другого подмножества её точек. СвойстваЛюбая выпуклая кривая имеет хорошо определённую конечную длину. Таким образом, выпуклая кривая является подмножеством спрямляемых кривых[2]. Согласно теореме о четырёх вершинах любая кривая имеет по меньшей мере четыре вершины, точки, в которых достигается локальный минимум или максимум кривизны[4][5]. Параллельные касательныеЗамкнутая кривая является выпуклой в том и только в том случае, когда не существует трёх различных точек на кривой , таких, что касательные в этих точках параллельны. Монотонность угла наклонаКривая называется простой, если она не пересекает себя. Замкнутая регулярная плоская простая кривая выпукла тогда и только тогда, когда её кривизна либо всегда положительна, либо всегда отрицательна. То есть, её угол наклона (угол касательной к кривой по отношению к оси) является слабо монотонной функцией параметризации кривой[1]. Связанные фигурыГладкие выпуклые кривые с осевой симметрией иногда называют овалами[6]. Однако в конечной проективной геометрии овалы[англ.] определяются как множества, в которых любая точка имеет единственную касательную, что в евклидовой геометрии верно в случае гладких строго выпуклых замкнутых кривых. См. такжеПримечания
|
Portal di Ensiklopedia Dunia