Функция — чётная, возрастает на интервале , убывает на интервале а её график ограничивает над осью абсцисс единичную площадь. Кроме того, при . Таким образом, целочисленные сдвиги образуют разбиение единицы:
Значения в двоично-рациональных точках вида — рациональные числа. Функция неаналитична ни в одной точке своего носителя. Для её вычисления нельзя использовать ряд Тейлора, однако существуют быстросходящиеся ряды специального вида, приспособленные для таких вычислений. Используются также разложения в ряд Фурье, ряды по полиномам Лежандра, Бернштейна и др.
Атомарные функции бесконечно дробимы, то есть представимы в виде линейной комбинации сдвигов-сжатий финитных функций с произвольной длиной носителя (дробных компонент), и могут рассматриваться как аналоги B-сплайнов бесконечной гладкости, а также идейные предшественники вейвлетов. Хорошие аппроксимативные свойства функции основаны на том факте, что с помощью линейной комбинации сдвигов-сжатий можно представить алгебраический многочлен любой степени.
Атомарные функции ha(x), совершенные сплайны
Атомарные функции (при ) являются обобщением функции . Соответствующие функционально-дифференциальные уравнения имеют вид
Атомарные функции впервые были введены в работе[8] 1971 года. Обстоятельства появления функции связаны с проблемой, поставленной в 1967 году В. Л. Рвачёвым и решённой В. А. Рвачёвым: найти такую финитную дифференцируемую функцию, что её график имел бы вид «горба» с одним участком возрастания и одним участком убывания, а график её производной состоял бы из «горба» и «ямы», причём последние были бы подобны «горбу» самой функции, т. e. представляли бы собой — с точностью до масштабного коэффициента — сдвинутую и сжатую копию графика исходной функции[9].
Итоги начального этапа развития теории атомарных функций представлены в работе В. А. Рвачёва «Атомарные функции и их применение»[10]. В ней дан подробный обзор работ по теории атомарных функций, доведённый до 1984 года, приведён список нерешённых задач теории атомарных функций, во многом определивший направления дальнейших исследований.
↑Кравченко В. Ф., Рвачёв В. А. Применение атомарных функций в задачах интерполяции // Электромагнитные волны и электронные системы. — 1998. — Т. 3, № 3. — С. 16—26.
↑Зелкин Е. Г., Кравченко В. Ф., Басараб М. А. Интерполяция сигналов с финитным спектром с помощью преобразований Фурье атомарных функций и её применение в задачах синтеза антенн // Радиотехника и электроника. — 2002. — Т. 47, № 4. — С. 461—468.
↑Рвачов В. Л., Рвачов В. О. Про одну фінітну функцію // ДАН УРСР. Сер. А. — 1971. — № 8. — С. 705—707.
↑Рвачёв В. А. .Атомарные функции и их применение // Стоян Ю. Г., Проценко В. С., Манько Г. П. и др. Теория R-функций и актуальные проблемы прикладной математики. — Киев: Наукова думка, 1986. — С. 45—65. — 264 с.
↑Басараб М. А., Зелкин Е. Г., Кравченко В. Ф., Яковлев В. П. . Цифровая обработка сигналов на основе теоремы Уиттекера — Котельникова — Шеннона. — М.: Радиотехника, 2004. — 72 с. — ISBN 5-93108-064-3.
↑Кравченко В. Ф., Рвачёв В. Л. . Алгебра логики, атомарные функции и вейвлеты в физических приложениях. — М.: Физматлит, 2006. — 416 с. — ISBN 5-9221-0752-6.
↑Цифровая обработка сигналов и изображений в радиофизических приложениях / Под ред. В. Ф. Кравченко. — М.: Физматлит, 2007. — 544 с. — ISBN 978-5-9221-0871-3.
↑Басараб М. А., Кравченко В. Ф., Матвеев В. А. . Методы моделирования и цифровой обработки сигналов в гироскопии. — М.: Физматлит, 2008. — 248 с. — ISBN 978-5-9221-0809-6.
↑Волосюк В. К., Кравченко В. Ф. . Статистическая теория радиотехнических систем дистанционного зондирования и радиолокации / Под ред. В. Ф. Кравченко. — М.: Физматлит, 2008. — 704 с. — ISBN 978-5-9221-0895-9.
↑Кравченко В. Ф., Лабунько О. С., Лерер А. М., Синявский Г. П. . Вычислительные методы в современной радиофизике / Под ред. В. Ф. Кравченко. — М.: Физматлит, 2009. — 464 с. — ISBN 978-5-9221-1099-0.
↑Волосюк В. К., Гуляев Ю. В., Кравченко В. Ф., Кутуза Б. Г., Павликов В. В., Пустовойт В. И. Современные методы оптимальной обработки пространственно-временных сигналов в активных, пассивных и комбинированных активно-пассивных радиотехнических системах // Радиотехника и электроника. — 2014. — Т. 59, № 2. — С. 109—131.
↑Кравченко В. Ф., Кравченко О. В., Пустовойт В. И., Чуриков Д. В. Применение семейств атомарных, WA-систем и R-функций в современных проблемах радиофизики. Часть I // Радиотехника и электроника. — 2014. — Т. 59, № 10. — С. 949—978.
↑Кравченко В. Ф., Кравченко О. В., Пустовойт В. И., Чуриков Д. В., Юрин А. В. Применение семейств атомарных, WA-систем и R-функций в современных проблемах радиофизики. Часть II // Радиотехника и электроника. — 2015. — Т. 60, № 2. — С. 109—148.
↑Кравченко В. Ф., Кравченко О. В., Пустовойт В. И., Чуриков Д. В. Применение семейств атомарных, WA-систем и R-функций в современных проблемах радиофизики. Часть III // Радиотехника и электроника. — 2015. — Т. 60, № 7. — С. 663—694.
↑Кравченко В. Ф., Коновалов Я. Ю., Пустовойт В. И. Семейства атомарных функций chan(x) и fupn(x) в цифровой обработке сигналов // ДАН РАН. — 2015. — Т. 462, № 1. — С. 35—40.
↑Кравченко В. Ф., Чуриков Д. В. Цифровая обработка сигналов атомарными функциями и вейвлетами. — М.: Техносфера, 2019. Дополнительный тираж. 182 с. ISBN 978-5-94836-506-0.
↑Кравченко В. Ф., Кравченко О. В. Конструктивные методы алгебры логики, атомарных функций, вейвлетов, фракталов в задачах физики и техники. — М.: Техносфера, 2018. 696 с. ISBN 978-5-94836-518-3.
Стоян Ю. Г., Проценко В. С., Манько Г. П. и др. Теория R-функций и актуальные проблемы прикладной математики. — Киев: Наукова думка, 1986. — 264 с.
Тихомиров В. М.Теория приближений // Современные проблемы математики. Фундаментальные направления. — М.: ВИНИТИ АН СССР, 1987. — Т. 14. — 272 с. — С. 103—260.
Кравченко В. Ф. Лекции по теории атомарных функций и некоторым их приложениям. — М.: Радиотехника, 2003. — 512 с. — ISBN 5-93108-019-8.