Апории ЗенонаАпори́и Зено́на (от др.-греч. ἀπορία «трудность») — внешне парадоксальные рассуждения на тему о движении и множестве древнегреческого философа Зенона Элейского (V век до н. э.). Апории Зенона связаны с противоречием между данными опыта и их мысленным анализом[1]. Современники упоминали более 40 апорий Зенона, до нас дошли 9, обсуждаемые в «Физике» и в других трудах Аристотеля, а также в комментариях Симпликия, Филопона и Фемистия к Аристотелю[2]; одна апория из этих 9 приводится также у Диогена Лаэртского[3], апории о множестве обсуждаются в диалоге Платона «Парменид». Комментатор Аристотеля Элий Александрийский (VI век) сообщает, что Зенон высказал 40 рассуждений (эпихейрем) о множестве и пять — о движении[4]:
Наиболее известны парадокс «Ахиллес и черепаха» и другие апории Зенона о движении, которые обсуждаются более двух тысячелетий, им посвящены сотни исследований. Платон в «Пармениде» их не упоминает, поэтому В. Я. Комарова предполагает, что парадоксы движения были написаны Зеноном позднее других[5]. Ошибочно воспринимать эти рассуждения как софизмы или полагать, что с появлением высшей математики все апории разрешены[6]. Бертран Рассел писал, что апории Зенона «в той или иной форме затрагивают основания почти всех теорий пространства, времени и бесконечности, предлагавшихся с его времени до наших дней»[7][8]. «Проблематика аргументов Зенона далеко выходит за пределы конкретной исторической ситуации, обусловившей их появление. Анализу апорий Зенона посвящена колоссальная литература; особенно большое внимание им уделялось в последние сто лет, когда математики стали усматривать в них предвосхищение парадоксов современной теории множеств»[9]. Научные дискуссии, вызванные рассуждениями Зенона, существенно углубили понимание таких фундаментальных понятий, как роль непрерывного и дискретного (прерывного) в природе, адекватность физического движения и его математической модели и др. Эти дискуссии продолжаются и в настоящее время (см. список литературы), прийти к общему мнению о сущности парадоксов научному сообществу пока не удалось[10]. Философия элеатовЭлейская философская школа (элеаты) существовала в период с конца VI века до н. э. до первой половины V века до н. э., родоначальником её считается Парменид, учитель Зенона. Школа разработала своеобразное учение о бытии. Парменид изложил свои философские взгляды в поэме, от которой до нас дошли отдельные фрагменты[11][12][13]. Элеаты отстаивали единство бытия, считая, что представление о множественности вещей во Вселенной ошибочно[14]. Бытие элеатов полно, реально и познаваемо, однако вместе с тем оно нераздельно, неизменно и вечно, у него нет ни прошлого, ни будущего, ни рождения, ни смерти. Мышление, говорилось в поэме Парменида, по своему содержанию тождественно предмету мышления («одно и то же — мышление и то, о чём мысль»). Далее Парменид логически выводит характеристики истинно сущего: оно «не возникло, не уничтожимо, целокупно [не имеет частей][13], единственно, неподвижно и нескончаемо [во времени]». Познание этого целостного мира возможно только путём разумных (логических) рассуждений, а чувственная картина мира, включая наблюдаемые движения, обманчива и противоречива[15]. С этих же позиций элеаты впервые в науке поставили вопрос о допустимости научных понятий, связанных с бесконечностью[16]. Как отмечают В. Ф. Асмус и ряд других историков, элеаты отрицали не возможность восприятия движения и множественности мира, а их мыслимость, то есть совместимость с логикой. Элеаты выявляли неизбежные, с их точки зрения, противоречия, возникающие при применении к природе научных понятий того времени, что подтверждало позицию Парменида, рационально-логический подход которого позволял этих противоречий избежать[17][18]. Отстаивая свои взгляды в философских спорах, Зенон и другие элеаты использовали изощрённую логическую аргументацию, и важной её частью были апории Зенона, доказывающие нелогичность и противоречивость взглядов оппонентов. Апории о движенииЭто наиболее известные (и, судя по библиографии, наиболее актуальные) парадоксы Зенона. Модели движения в античной натурфилософииАпории и вообще взгляды Зенона нам известны только в кратком пересказе других античных философов, которые жили столетия спустя и хотя высоко ценили Зенона как «основателя диалектики», но чаще всего были его идейными противниками. Поэтому трудно достоверно выяснить, как формулировал апории сам Зенон, что он хотел показать или опровергнуть[19]. Согласно наиболее распространённой точке зрения, идущей от Платона, апории были направлены на защиту монизма философии Парменида от обыденных представлений о движении и множественности вещей; оппонентами Зенона могли быть сторонники здравого смысла. Некоторые учёные считают, что аргументы Зенона были связаны с размышлениями о ранних математических учениях пифагорейцев, поскольку апории фактически ставили под сомнение применение количественных подходов к физическим телам и пространственной протяжённости[10][20][6]. Эта точка зрения подтверждается тем, что элеатов в древности называли афизиками, то есть противниками науки о природе[19]. В V веке до н. э. древнегреческая математика достигла высокой ступени развития, и пифагорейская школа выражала уверенность, что математические закономерности лежат в основе всех законов природы. В частности, математическая модель движения в природе была создана на основе геометрии, которая к этому времени уже была достаточно глубоко разработана. Геометрия пифагорейцев опиралась на ряд идеализированных понятий: тело, поверхность, фигура, линия — и самым идеализированным было фундаментальное понятие точки пространства, не имеющей никаких собственных измеримых характеристик[21][22]. Тем самым любая классическая кривая считалась одновременно и непрерывной, и состоящей из бесконечного количества отдельных точек. В математике это противоречие не вызывало проблем, но применение этой схемы к реальному движению поставило вопрос, насколько правомерен такой внутренне противоречивый подход[23]. Первым проблему ясно сформулировал Зенон Элейский в серии своих парадоксов (апорий). В двух апориях (Ахиллес и Дихотомия) предполагается, что время и пространство непрерывны и неограниченно делимы; Зенон показывает, что это допущение приводит к логическим трудностям. Третья апория («Стрела»), напротив, рассматривает время как дискретное, составленное из точек-моментов; в этом случае, как показал Зенон, возникают другие трудности[18]. Отметим, что неправильно утверждать, будто Зенон считал движение несуществующим, потому что, согласно элейской философии, доказать несуществование чего бы то ни было невозможно: «несуществующее немыслимо и невыразимо»[24]. Цель аргументации Зенона была более узкой: выявить противоречия в позиции оппонента. Часто в число апорий движения включают «Стадион» (см. ниже), но по тематике этот парадокс скорее относится к апориям бесконечности. Далее содержание апорий пересказывается с использованием современной терминологии. Под влиянием возникших философских споров сформировались два взгляда на строение материи и пространства: первый утверждал их бесконечную делимость, а второй — существование неделимых частиц, «атомов». Каждая из этих школ решала поставленные элеатами проблемы по-своему. Содержание апорий о движенииАхиллес и черепахаСамая ранняя (из дошедших до наших дней) формулировка данной апории приведена в «Физике» Аристотеля[25]:
Современная формулировка:
Данная апория — парная по отношению к другой зеноновской апории, «Дихотомии», которая, наоборот, доказывает, что движение никогда не начнётся. Здесь и в следующей апории предполагается, что пространство и время не имеют предела делимости. Диоген Лаэртский считал автором этой знаменитой апории Парменида, учителя Зенона[18]. Черепаха как персонаж вставлена позднейшими комментаторами (Симпликием и Фемистием), в тексте апории, приведенном в «Физике» Аристотеля, быстроногий Ахиллес догоняет другого бегуна[26]:. ДихотомияСамая ранняя (из дошедших до наших дней) формулировка данной апории приведена в «Физике» Аристотеля. Название «Дихотомия» (по-гречески: деление пополам) дано Аристотелем там же[27].
Современная формулировка:
Апория «Дихотомия» — парная по отношению к апории «Ахиллес и черепаха», которая, наоборот, доказывает, что движение никогда не закончится. Летящая стрела
Апории «Дихотомия» и «Стрела» напоминают следующие парадоксальные афоризмы, приписываемые ведущему представителю древнекитайской «школы имён» (мин цзя) Гунсунь Луну (середина IV века до н. э. — середина III века до н. э.):
Критика апорий АристотелемАристотель (IV век до н. э.) считал материю непрерывной и неограниченно делимой. В книгах IV (главы 2, 3), VI (главы 2, 9) и VIII (глава 8) своей «Физики» он анализирует и отвергает рассуждения Зенона[28]. В отношении апорий движения Аристотель подчёркивает, что хотя интервал времени можно неограниченно делить, но его нельзя составить из изолированных точек-моментов и нельзя этой бесконечной делимости соотносить бесконечное время:
Диоген сообщает, что у Аристотеля и Гераклида Понтийского были сочинения под названием «Против учения Зенона», однако они не сохранились. Мнения историков и комментаторов по поводу аргументов Аристотеля разделились: одни считали их достаточными, другие критиковали за неубедительность и недостаточную глубину. В частности, Аристотель не дал объяснения, как конечный отрезок времени может состоять из бесконечного числа частей[18]. В. Я. Комарова пишет[29]:
Атомистический подходПервый древнегреческий атомист, Левкипп, был учеником Зенона и одним из учителей другого крупного атомиста, Демокрита. Наиболее детальное изложение античного атомизма — система Эпикура, IV—III века до н. э. — дошло до нас в изложении Лукреция Кара. В отличие от Аристотеля, Эпикур считал мир дискретным, состоящим из вечно движущихся неделимых атомов и пустоты. Особый интерес представляет эпикуровская концепция изотахии, согласно которой все атомы движутся с одинаковой скоростью[30]. Учитывая, что в мире Эпикура нельзя измерить нечто меньшее, чем атом, отсюда следует, что существует и наименьший измеримый интервал времени. Математическая идеализация этой модели представляла любое тело, фигуру или линию как объединение бесконечного числа бесконечно малых неделимых (этот подход как «метод неделимых» получил особенное развитие в XVI—XVII вв.). Как следствие, наблюдаемое движение из непрерывного становится скачкообразным. Александр Афродисийский, комментатор Аристотеля, так изложил взгляды сторонников Эпикура: «Утверждая, что и пространство, и движение, и время состоят из неделимых частиц, они утверждают также, что движущееся тело движется на всем протяжении пространства, состоящего из неделимых частей, а на каждой из входящих в него неделимых частей движения нет, а есть только результат движения»[31]. Подобный подход сразу обесценивает парадоксы Зенона, так как убирает оттуда все бесконечности. Обсуждение в Новое времяПолемика вокруг зеноновских апорий продолжилась и в Новое время. До XVII века интерес к апориям не отмечается, и их аристотелевская оценка являлась общепринятой. Первое серьёзное исследование предпринял французский мыслитель Пьер Бейль, автор известного «Исторического и критического словаря» (1696). В статье о Зеноне Бейль подверг критике позицию Аристотеля и пришёл к выводу, что Зенон прав: понятия времени, протяжённости и движения связаны с трудностями, непреодолимыми для человеческого ума[32]. Хорватский учёный и натурфилософ Р. И. Бошкович (1711—1788), соглашаясь с теми критиками Зенона, которые считали, что протяжённость не может состоять из бесконечного числа бесконечно малых элементов, считал первые элементы материи хотя и непротяжёнными (материальными точками), но наделёнными силами отталкивания, заставляющими их находиться на некотором расстоянии друг от друга[33][34]. Сходные с апориями темы затронуты в антиномиях Канта. Гегель в своей «Истории философии» подчеркнул, что Зенонова диалектика материи «не опровергнута до сегодняшнего дня» (ist bis auf heutigen Tag unwiderlegt)[3]. Гегель оценил Зенона как «отца диалектики» не только в античном, но и в гегелевском смысле слова диалектика. Он отметил, что Зенон различает чувственно воспринимаемое и мыслимое движение. Последнее, в соответствии со своей философией, Гегель описал как сочетание и конфликт противоположностей, как диалектику понятий[35]. Гегель не даёт ответа на вопрос, насколько этот анализ приложим к реальному движению, ограничившись выводом: «Зенон осознал определения, содержащиеся в наших представлениях о пространстве и времени, и обнаружил заключающиеся в них противоречия»[36] Во второй половине XIX века анализом парадоксов Зенона занимались многие учёные, высказывавшие самые разные точки зрения. Среди них[3]:
и многие другие. Современная трактовкаДовольно часто появлялись (и продолжают появляться) попытки математически опровергнуть рассуждения Зенона и тем самым «закрыть тему». Скажем, построив ряд из уменьшающихся интервалов для апории «Ахиллес и черепаха», можно легко доказать, что он сходится, так что Ахиллес обгонит черепаху. Например, Бертран Рассел считал, что современная математика способна удовлетворительно разрешить все апории Зенона[38]. Однако, по мнению ряда учёных, в этих опровержениях подменяется суть спора. В апориях Зенона речь идёт не о математической модели, а о реальном движении, и поэтому бессмысленно ограничить анализ парадокса внутриматематическими рассуждениями, поскольку Зенон ставит под сомнение именно применимость к реальному движению идеализированных математических понятий[18][39][40]. О проблеме адекватности реального движения и его математической модели см. следующий раздел данной статьи. Д. Гильберт и П. Бернайс в монографии «Основания математики» (1934) замечают по поводу апории «Ахиллес и черепаха»[41]:
Серьёзные исследования апорий Зенона рассматривают физическую и математическую модели совместно. Р. Курант и Г. Роббинс полагают, что для разрешения парадоксов необходимо существенно углубить наше понимание физического движения[42]. С течением времени движущееся тело последовательно проходит все точки своей траектории, однако если для любого ненулевого интервала пространства и времени нетрудно указать следующий за ним интервал, то для точки (или момента) невозможно указать следующую за ней точку, и это нарушает последовательность. «Остаётся неизбежное расхождение между интуитивной идеей и точным математическим языком, предназначенным для того, чтобы описывать её основные линии в научных, логических терминах. Парадоксы Зенона ярко обнаруживают это несоответствие». Гильберт и Бернайс высказывают мнение, что суть парадоксов состоит в неадекватности непрерывной, бесконечно делимой математической модели, с одной стороны, и физически дискретной материи, с другой[43]: «мы вовсе не обязательно должны верить в то, что математическое пространственно-временное представление движения имеет физическое значение для произвольно малых интервалов пространства и времени». Другими словами, парадоксы возникают из-за некорректного применения к реальности идеализированных понятий «точка пространства» и «момент времени», которые не имеют в реальности никаких аналогов, потому что любой физический объект имеет ненулевые размеры, ненулевую длительность и не может быть делим бесконечно. Близкие точки зрения можно найти у Анри Бергсона и у Николя Бурбаки. Согласно Анри Бергсону[44]:
Бергсон полагал, что есть принципиальная разница между движением и пройденным расстоянием. Пройденное расстояние можно произвольно делить, между тем как движение произвольному делению не поддаётся. Каждый шаг Ахиллеса и каждый шаг черепахи должны рассматриваться как неделимые. Это же относится и к полёту стрелы:
Согласно Николя Бурбаки[45]:
Замечание Бурбаки означает, что необходимо объяснить: каким образом физический процесс за конечное время принимает бесконечно много различных состояний. Одно из возможных объяснений: пространство-время в действительности является дискретным, то есть существуют минимальные порции (кванты) как пространства, так и времени[46]. Если это так, то все парадоксы бесконечности в апориях исчезают. Ричард Фейнман заявил[47]:
Дискретное пространство-время активно обсуждалось физиками ещё в 1950-е годы — в частности, в связи с проектами единой теории поля[48], — однако существенного продвижения по этому пути добиться не удалось. С. А. Векшенов считает, что для решения парадоксов необходимо ввести числовую структуру, более соответствующую интуитивно-физическим представлениям, чем канторовский точечный континуум[49]. Пример неконтинуальной теории движения предложил Садэо Сирайси[50]. И А. Карпенко обосновывает, что существующие решения апорий не эффективны по той причине, что в формулировке апорий смешиваются свойства макромира и микромира; то есть от наблюдения больших физических объектов осуществляется неправомерный переход к описанию бесконечно малого, в то время как их устройства различаются[51]. Это можно понимать таким образом, что апории не имеют физического смысла и именно поэтому не могут быть решены. Морис Клайн в своих комментариях по поводу апорий Зенона пишет: «Важно отчётливо сознавать, что природа и математическое описание природы — не одно и то же, причём различие обусловлено не только тем, что математика представляет собой идеализацию… Природа, возможно, отличается несравненно большей сложностью, или структура её не обладает особой правильностью»[52]. «Математический энциклопедический словарь» считает, что сущность апорий достаточно глубока, и рассматривает разные пути решения проблемы[53]:
Следующий раздел данной статьи содержит более подробное изложение этой темы. Адекватность аналитической теории движенияОбщая теория движения с переменной скоростью была разработана в конце XVII века Ньютоном и Лейбницем. Математической основой теории служит математический анализ, первоначально опиравшийся на понятие бесконечно малой величины. В дискуссии о том, что собой представляет бесконечно малая, вновь возродились два античных подхода[54][55].
Оба подхода практически эквивалентны, но с точки зрения физики удобнее первый; в учебниках физики часто встречаются фразы вроде «пусть dV — бесконечно малый объём…». С другой стороны, вопрос о том, какой из подходов ближе к физической реальности, не решён. При первом подходе неясно, чему соответствуют в природе бесконечно малые числа. При втором адекватности физической и математической модели мешает тот факт, что операция перехода к пределу — инструментальный исследовательский приём, не имеющий никакого природного аналога. В частности, трудно говорить о физической адекватности бесконечных рядов, элементы которых относятся к произвольно малым интервалам пространства и времени (хотя как приближённая модель реальности такие модели часто и успешно используются)[6][59]. Наконец, не доказано, что время и пространство устроены сколько-нибудь похоже на математические структуры вещественных или гипервещественных чисел[49]. Дополнительную сложность внесла в вопрос квантовая механика, показавшая, что в микромире резко повышена роль дискретности. Таким образом, дискуссии о структуре пространства, времени и движения, начатые Зеноном, активно продолжаются и далеки от завершения. Другие апории ЗенонаВышеприведённые (наиболее известные) апории Зенона касались применения понятия бесконечности к движению, пространству и времени. В других апориях Зенон демонстрирует иные, более общие аспекты бесконечности. Однако, в отличие от трёх знаменитых апорий о физическом движении, другие апории изложены менее ясно и касаются в основном чисто математических или общефилософских аспектов. С появлением математической теории бесконечных множеств интерес к ним существенно упал. СтадионАпория «Стадион» (называемая также «Ристалище») у Аристотеля («Физика», Z, 9) сформулирована не вполне ясно:
Исследователи предлагали разные истолкования этой апории. Л. В. Блинников сформулировал её следующим образом[60]:
С. А. Яновская предлагает иное истолкование, основанное на атомистических предпосылках[61]:
По другим интерпретациям, идея этой апории аналогична парадоксу Галилея или «колесу Аристотеля»: бесконечное множество может быть равномощно своей части[62]. МножественностьЧасть апорий посвящена обсуждению вопроса о единстве и множественности мира[19].
Сходные вопросы обсуждаются в диалоге Платона «Парменид»[63], где Зенон и Парменид обстоятельно разъясняют свою позицию. На современном языке данное рассуждение Зенона означает[19], что множественное бытие не может быть актуально бесконечно и поэтому должно быть конечно, но к существующим вещам всегда можно добавить новые, что противоречит конечности. Вывод: бытие не может быть множественным. Комментаторы обращают внимание на то, что данная апория по своей схеме чрезвычайно напоминает открытые на рубеже XIX—XX веков антиномии теории множеств[19][64], особенно парадокс Кантора: с одной стороны, мощность множества всех множеств больше, чем мощность любого другого множества, но с другой стороны, для любого множества нетрудно указать множество большей мощности (теорема Кантора). Это противоречие, вполне в духе апории Зенона, разрешается однозначно: абстракция множества всех множеств признаётся недопустимой и несуществующей как научное понятие. МераСимпликий описывает эту апорию следующим образом[16].
Другими словами, если деление вещи пополам сохраняет её качество, то в пределе получаем, что вещь одновременно и бесконечно велика (поскольку неограниченно делима), и бесконечно мала. Кроме того, непонятно, как существующая вещь может иметь бесконечно малые измерения. Более подробно эти же аргументы присутствуют в комментариях Филопона[65]. Также аналогичные рассуждения Зенона цитирует и критикует Аристотель в своей «Метафизике»[66], книга I, глава IV:
О местеВ изложении Аристотеля апория утверждает: если всё существующее помещается в известном пространстве (месте, греч. топос), то ясно, что будет и пространство пространства, и так идёт в бесконечность[67]. Аристотель замечает на это, что место не есть вещь и не нуждается в собственном месте. Данная апория допускает расширенное толкование, поскольку элеаты не признавали пространство отдельно от тел, в нём расположенных, то есть отождествляли материю и пространство, ею занимаемое[18]. Хотя Аристотель и отвергает рассуждение Зенона, но в своей «Физике» он приходит по существу к тому же выводу, что и элеаты: место существует лишь относительно тел, в нём находящихся. При этом Аристотель обходит молчанием естественный вопрос, как происходит изменение места при движении тела[68]. Медимн зерна
Формулировка Зенона подвергалась критике, так как парадокс легко объясняется ссылкой на порог восприятия звука — отдельное зерно падает не бесшумно, а очень тихо, поэтому звука падения не слышно. Смысл апории — доказать, что часть не подобна целому (качественно отличается от него) и, следовательно, бесконечная делимость невозможна[70]. Аналогичные парадоксы предложил в IV веке до н. э. Евбулид — парадоксы «Лысый» и «Куча»: «одно зерно — не куча, добавление одного зерна не меняет дела, с какого же количества зёрен начинается куча?» Историческое значение апорий Зенона«Зенон вскрыл противоречия, в которые впадает мышление при попытке постигнуть бесконечное в понятиях. Его апории — это первые парадоксы, возникшие в связи с понятием бесконечного»[16]. Чёткое различение потенциальной и актуальной бесконечности у Аристотеля — во многом результат осмысления зеноновских апорий. Другие исторические заслуги элейских парадоксов:
Как уже отмечалось выше, формирование античного атомизма было попыткой дать ответ на вопросы, поставленные апориями. В дальнейшем к исследованию вопроса привлекались математический анализ, теория множеств, новые физические и философские подходы; ни один из них не стал общепризнанным решением вопроса, но сам факт непрерывного живого интереса к древней проблеме показывает её эвристическую плодотворность. Различные точки соприкосновения апорий Зенона с современной наукой обсуждаются в статье Зураба Силагадзе[59]. В заключении этой статьи автор приходит к выводу:
Апории Зенона в литературе и искусствеА. С. Пушкин посвятил парадоксам Зенона стихотворение «Движение» (1825)[73].
В этом историческом анекдоте «мудрец брадатый» — это сторонник Зенона (комментатор Элий, как сказано выше, приписывал аргументацию самому Зенону[4]), а его оппонентом в разных вариантах анекдота выступает Диоген или Антисфен (оба они жили существенно позднее Зенона, так что с ним самим спорить не могли). Одна из версий анекдота, упоминаемая Гегелем, сообщает, что когда элеат признал аргумент Диогена убедительным, Диоген побил его палкой за чрезмерное доверие к очевидности[74]. Льюис Кэрролл написал диалог с логическими загадками под названием «Что Черепаха сказала Ахиллесу?»[75]. Лев Толстой в III томе эпопеи «Война и мир» (начало 3-й части) пересказывает парадокс про Ахиллеса и черепаху и предлагает своё толкование: нельзя разделять непрерывное движение на «отдельные единицы», вместо этого надо использовать аппарат суммируемых «бесконечно-малых величин». Далее Толстой замечает: «в отыскании законов исторического движения происходит совершенно то же» и критикует попытки рассматривать непрерывный ход истории как происходящий по произволу отдельных влиятельных исторических лиц или сводить историю к отдельным крупным историческим событиям. Поль Валери в поэме «Кладбище у моря» (Le Cimetiere Marin, 1920) писал[76]:
В основе сюжета фантастического рассказа Ф. Дика «О неутомимой лягушке» лежит апория «Дихотомия». Апория про Ахиллеса неоднократно упоминается в произведениях Борхеса. Парадоксальная ситуация, описанная в ней, нашла также отражение в различных юмористических произведениях. Такэси Китано в 2008 году снял фильм «Ахиллес и черепаха». См. такжеПримечания
ЛитератураАнтичные авторы
Книги современных авторов
Краткая библиография научных статей с анализом апорийЛитература перечислена в хронологическом порядке.
Ссылки
|