Anel localEm matemática, um anel local[1] é um anel com um único ideal maximal. Neste caso se é um anel local e m é seu ideal maximal então o quociente é um corpo, chamado de corpo residual de . Por exemplo, todo corpo é um anel local cujo ideal maximal é o ideal nulo. Mas nem todo anel local é corpo, por exemplo o anel das séries de potências formais é um anel local com ideal maximal o ideal gerado por e não é corpo pois não é nulo e mesmo assim não é invertível. Anéis locais são comparativamente simples, e servem para descrever o que é chamado de "comportamento local", no sentido de funções definidas sobre variedades algébricas ou variedades, ou de corpo numérico algébrico examinado em um local ou primo. Álgebra local é o campo da álgebra comutativa que estuda anéis locais e seus módulos. O conceito de anéis locais foi introduzido por Wolfgang Krull em 1938 sob o nome em alemão Stellenringe.[2] O nome em inglês local ring, de onde deriva esta nomenclatura em português, é devido a Oscar Zariski.[3] Referências
|
Portal di Ensiklopedia Dunia