^ abCingolani G, Petosa C, Weis K, Müller CW (1999). “Structure of importin-beta bound to the IBB domain of importin-alpha”. Nature399 (6733): 221-229. PMID10353244.
^Yoshimura SH, Hirano T (2016). “HEAT repeats - versatile arrays of amphiphilic helices working in crowded environments?”. J. Cell Sci.129 (21): 3963-3970. PMID27802131.
^Grinthal A, Adamovic I, Weiner B, Karplus M, Kleckner N (2010). “PR65, the HEAT-repeat scaffold of phosphatase PP2A, is an elastic connector that links force and catalysis”. Proc. Natl. Acad. Sci. USA.107 (6): 2467-2472. PMID20133745.
^Kappel C, Zachariae U, Dölker N, Grubmüller H (2010). “An unusual hydrophobic core confers extreme flexibility to HEAT repeat proteins”. Biophys. J.99 (5): 1596-1603. PMID20816072.
^Yoshimura SH, Kumeta M, Takeyasu K (2014). “Structural mechanism of nuclear transport mediated by importin β and flexible amphiphilic proteins”. Structure22 (12): 1699-1710. PMID25435324.
^Andrade MA, Bork P (1995). “HEAT repeats in the Huntington's disease protein”. Nat. Genet.11 (2): 115-116. PMID7550332.
^Malik HS, Eickbush TH, Goldfarb DS (1997). “Evolutionary specialization of the nuclear targeting apparatus”. Proc. Natl. Acad. Sci. USA.94 (25): 13738-13742. PMID9391096.
^Neuwald AF, Hirano T (2000). “HEAT repeats associated with condensins, cohesins, and other complexes involved in chromosome-related functions”. Genome Res.10 (10): 1445-52. PMID11042144.
^Jäger H, Herzig B, Herzig A, Sticht H, Lehner CF, Heidmann S (2004). “Structure predictions and interaction studies indicate homology of separase N-terminal regulatory domains and Drosophila THR”. Cell Cycle3 (3): 182-188. PMID14712087.
^Perry J, Kleckner N (2003). “The ATRs, ATMs, and TORs are giant HEAT repeat proteins”. Cell112 (2): 151-155. PMID12553904.
^Baretić D, Williams RL (2014). “PIKKs--the solenoid nest where partners and kinases meet”. Curr. Opin. Struct. Biol.29: 134-142. PMID25460276.
^Ohkura H, Garcia MA, Toda T (2001). “Dis1/TOG universal microtubule adaptors - one MAP for all?”. J. Cell Sci.114 (Pt 21): 3805-3812. PMID11719547.
^Al-Bassam J, Kim H, Brouhard G, van Oijen A, Harrison SC, Chang F (2010). “CLASP promotes microtubule rescue by recruiting tubulin dimers to the microtubule”. Dev. Cell19 (2): 245-258. PMID20708587.
^Groves MR, Hanlon N, Turowski P, Hemmings BA, Barford D (1999). “The structure of the protein phosphatase 2A PR65/A subunit reveals the conformation of its 15 tandemly repeated HEAT motifs”. Cell96 (1): 99-110. PMID9989501.
^Xu Y, Xing Y, Chen Y, Chao Y, Lin Z, Fan E, Yu JW, Strack S, Jeffrey PD, Shi Y (2006). “Structure of the protein phosphatase 2A holoenzyme”. Cell127 (6): 1239-1251. PMID17174897.
^Cho US, Xu W (2007). “Crystal structure of a protein phosphatase 2A heterotrimeric holoenzyme”. Nature445 (7123): 53-57. PMID17086192.
^Goldenberg SJ, Cascio TC, Shumway SD, Garbutt KC, Liu J, Xiong Y, Zheng N (2004). “Structure of the Cand1-Cul1-Roc1 complex reveals regulatory mechanisms for the assembly of the multisubunit cullin-dependent ubiquitin ligases”. Cell119 (4): 517-528. PMID15537541.
^Takagi K, Kim S, Yukii H, Ueno M, Morishita R, Endo Y, Kato K, Tanaka K, Saeki Y, Mizushima T (2012). “Structural basis for specific recognition of Rpt1p, an ATPase subunit of 26 S proteasome, by proteasome-dedicated chaperone Hsm3p”. J. Biol. Chem.287 (15): 12172-12182. PMID22334676.
^Chook YM, Blobel G (1999). “Structure of the nuclear transport complex karyopherin-beta2-Ran x GppNHp”. Nature399 (6733): 230-237. PMID10353245.
^Bayliss R, Littlewood T, Stewart M (2000). “Structural basis for the interaction between FxFG nucleoporin repeats and importin-beta in nuclear trafficking”. Cell102 (1): 99-108. PMID10929717.
^Matsuura Y, Stewart M (2004). “Structural basis for the assembly of a nuclear export complex”. Nature432 (7019): 872-877. PMID15602554.
^Imasaki T, Shimizu T, Hashimoto H, Hidaka Y, Kose S, Imamoto N, Yamada M, Sato M (2007). “Structural basis for substrate recognition and dissociation by human transportin 1”. Mol. Cell28 (1): 57-67. PMID17936704.
^Montpetit B, Thomsen ND, Helmke KJ, Seeliger MA, Berger JM, Weis K (2011). “A conserved mechanism of DEAD-box ATPase activation by nucleoporins and InsP6 in mRNA export”. Nature472 (7342): 238-242. PMID21441902.
^Andersen KR, Onischenko E, Tang JH, Kumar P, Chen JZ, Ulrich A, Liphardt JT, Weis K, Schwartz TU (2013). “Scaffold nucleoporins Nup188 and Nup192 share structural and functional properties with nuclear transport receptors”. eLife11 (2): e00745. PMID23795296.
^Stuwe T, Lin DH, Collins LN, Hurt E, Hoelz A (2014). “Evidence for an evolutionary relationship between the large adaptor nucleoporin Nup192 and karyopherins”. Proc. Natl. Add. Sci.111 (7): 2530-2535. PMID24505056.
^Scheer E, Delbac F, Tora L, Moras D, Romier C (2012). “TFIID TAF6-TAF9 complex formation involves the HEAT repeat-containing C-terminal domain of TAF6 and is modulated by TAF5 protein”. J. Biol. Chem.287 (33): 27580-27592. PMID22696218.
^Wollmann P, Cui S, Viswanathan R, Berninghausen O, Wells MN, Moldt M, Witte G, Butryn A, Wendler P, Beckmann R, Auble DT, Hopfner KP (2011). “Structure and mechanism of the Swi2/Snf2 remodeller Mot1 in complex with its substrate TBP”. Nature475 (7356): 403-407. PMID21734658.
^Blattner C, Jennebach S, Herzog F, Mayer A, Cheung AC, Witte G, Lorenzen K, Hopfner KP, Heck AJ, Aebersold R, Cramer P (2011). “Molecular basis of Rrn3-regulated RNA polymerase I initiation and cell growth”. Genes Dev.25 (19): 2093-2105. PMID21940764.
^Andersen CB, Becker T, Blau M, Anand M, Halic M, Balar B, Mielke T, Boesen T, Pedersen JS, Spahn CM, Kinzy TG, Andersen GR, Beckmann R (2006). “Structure of eEF3 and the mechanism of transfer RNA release from the E-site”. Nature443 (7112): 663-668. PMID16929303.
^Marcotrigiano J, Lomakin IB, Sonenberg N, Pestova TV, Hellen CU, Burley SK (2001). “A conserved HEAT domain within eIF4G directs assembly of the translation initiation machinery”. Moll. Cell7 (1): 193-203. PMID11172724.
^Nozawa K, Ishitani R, Yoshihisa T, Sato M, Arisaka F, Kanamaru S, Dohmae N, Mangroo D, Senger B, Becker HD, Nureki O (2013). “Crystal structure of Cex1p reveals the mechanism of tRNA trafficking between nucleus and cytoplasm”. Nucleic Acids Res.41 (6): 3901-3914. PMID23396276.
^Sibanda BL, Chirgadze DY, Blundell TL (2010). “Crystal structure of DNA-PKcs reveals a large open-ring cradle comprised of HEAT repeats”. Nature463 (7277): 118-121. PMID20023628.
^Chaplin AK, Hardwick SW, Liang S, Stavridi AK, Hnizda A, Cooper LR, De Oliveira TM, Chirgadze DY, Blundell TL (2021). “Dimers of DNA-PK create a stage for DNA double-strand break repair”. Nat Struct Mol Biol. PMID33077952.
^Chen X, Xu X, Chen Y, Cheung JC, Wang H, Jiang J, de Val N, Fox T, Gellert M, Yang W (2021). “Structure of an activated DNA-PK and its implications for NHEJ”. Mol Cell81 (4): 801-810.e3. PMID33385326.
^Kowal P, Gurtan AM, Stuckert P, D'Andrea AD, Ellenberger T (2007). “Structural determinants of human FANCF protein that function in the assembly of a DNA damage signaling complex”. J. Biol. Chem.282 (3): 2047-2055. PMID17082180.
^Rubinson EH, Gowda AS, Spratt TE, Gold B, Eichman BF (2010). “An unprecedented nucleic acid capture mechanism for excision of DNA damage”. Nature468 (7322): 406-411. PMID20927102.
^Takai H, Xie Y, de Lange T, Pavletich NP (2010). “Tel2 structure and function in the Hsp90-dependent maturation of mTOR and ATR complexes”. Genes Dev.24 (18): 2019-2030. PMID20801936.
^Hara K, Zheng G, Qu Q, Liu H, Ouyang Z, Chen Z, Tomchick DR, Yu H (2014). “Structure of cohesin subcomplex pinpoints direct shugoshin-Wapl antagonism in centromeric cohesion”. Nat. Struct. Mol. Biol.21 (10): 864-870. PMID25173175.
^Roig MB, Löwe J, Chan KL, Beckouët F, Metson J, Nasmyth K (2014). “Structure and function of cohesin's Scc3/SA regulatory subunit.”. FEBS Lett588 (20): 3692-3702. PMID25171859.
^Li Y, Muir K, Bowler MW, Metz J, Haering CH, Panne D (2018). “Structural basis for Scc3-dependent cohesin recruitment to chromatin.”. eLife7: e38356. doi: 10.7554/eLife.38356. PMID30109982.
^ abKikuchi S, Borek DM, Otwinowski Z, Tomchick DR, Yu H (2016). “Crystal structure of the cohesin loader Scc2 and insight into cohesinopathy”. Proc Natl Acad Sci USA113 (44): 12444-12449. PMID27791135.
^ abChao WC, Murayama Y, Muñoz S, Jones AW, Wade BO, Purkiss AG, Hu XW, Borg A, Snijders AP, Uhlmann F, Singleton MR (2017). “Structure of the cohesin loader Scc2”. Nat Commun8: 13952. PMID28059076.
^Shi Z, Gao H, Bai XC, Yu H (2020). “Cryo-EM structure of the human cohesin-NIPBL-DNA complex”. Science: eabb0981. PMID32409525.
^Higashi TL, Eickhoff P, Sousa JS, Locke J, Nans A, Flynn HR, Snijders AP, Papageorgiou G, O'Reilly N, Chen ZA, O'Reilly FJ, Rappsilber J, Costa A, Uhlmann F (2020). “A Structure-Based Mechanism for DNA Entry into the Cohesin Ring”. Mol Cell79 (6): 917-933. PMID32755595.
^Chatterjee A, Zakian S, Hu XW, Singleton MR (2013). “Structural insights into the regulation of cohesion establishment by Wpl1”. EMBO J.32 (5): 677-687. PMID23395900.
^Ouyang Z, Zheng G, Song J, Borek DM, Otwinowski Z, Brautigam CA, Tomchick DR, Rankin S, Yu H (2013). “Structure of the human cohesin inhibitor Wapl”. Proc. Natl. Acad. Sci. USA110 (28): 11355-11360. PMID23776203.
^Muir KW, Kschonsak M, Li Y, Metz J, Haering CH, Panne D. (2016). “Structure of the Pds5-Scc1 complex and implications for cohesin function”. Cell Rep. PMID26923589.
^Lee BG, Roig MB, Jansma M, Petela N, Metson J, Nasmyth K, Löwe J (2016). “Crystal structure of the cohesin gatekeeper Pds5 and in complex with kleisin Scc1”. Cell Rep. PMID26923598.
^Ouyang Z, Zheng G, Tomchick DR, Luo X, Yu H. (2016). “Structural basis and IP6 requirement for Pds5-dependent cohesin dynamics”. Mol Cell62 (2): 248-259. PMID26971492.
^Bachmann G, Richards MW, Winter A, Beuron F, Morris E, Bayliss R (2016). “A closed conformation of the Caenorhabditis elegans separase-securin complex”. Open Biol6 (4): 160032. doi: 10.1098/rsob.160032. PMID27249343.
^Luo S, Tong L (2017). “Molecular mechanism for the regulation of yeast separase by securin”. Nature542 (7640): 255-259. PMID28146474.
^Boland A, Martin TG, Zhang Z, Yang J, Bai XC, Chang L, Scheres SH, Barford D (2017). “Cryo-EM structure of a metazoan separase-securin complex at near-atomic resolution”. Nat Struct Mol Biol24 (4): 414-418. PMID28263324.
^Kschonsak M, Merkel F, Bisht S, Metz J, Rybin V, Hassler M, Haering CH (2017). “Structural basis for a safety-belt mechanism that anchors condensin to chromosomes”. Cell171 (3): 588-600.e24. PMID28988770.
^Hara K, Kinoshita K, Migita T, Murakami K, Shimizu K, Takeuchi K, Hirano T, Hashimoto H (2019). “Structural basis of HEAT-kleisin interactions in the human condensin I subcomplex”. EMBO Rep: pii: e47183. doi: 10.15252/embr.201847183. PMID30858338.
^Hassler M, Shaltiel IA, Kschonsak M, Simon B, Merkel F, Thärichen L, Bailey HJ, Macošek J, Bravo S, Metz J, Hennig J, Haering CH (2019). “Structural basis of an asymmetric condensin ATPase cycle”. Mol Cell74 (6): 1175-1188.e24. PMID31226277.
^Shaltiel IA, Datta S, Lecomte L, Hassler M, Kschonsak M, Bravo S, Stober C, Ormanns J, Eustermann S, Haering CH. (2022). “A hold-and-feed mechanism drives directional DNA loop extrusion by condensin”. Science376 (6597): 1087-1094. PMID35653469.
^Al-Bassam J, Larsen NA, Hyman AA, Harrison SC (2007). “Crystal structure of a TOG domain: conserved features of XMAP215/Dis1-family TOG domains and implications for tubulin binding.”. Structure15 (3): 355-362. PMID17355870.
^Slep KC, Vale RD. (2007). “Structural basis of microtubule plus end tracking by XMAP215, CLIP-170, and EB1”. Mol. Cell27 (6): 976-991. PMID17889670.
^Ayaz P, Ye X, Huddleston P, Brautigam CA, Rice LM. (2012). “A TOG:αβ-tubulin complex structure reveals conformation-based mechanisms for a microtubule polymerase.”. Science337 (6096): 3731-3736. PMID22904013.
^Aylett CH, Sauer E, Imseng S, Boehringer D, Hall MN, Ban N, Maier T (2016). “Architecture of human mTOR complex 1”. Science351 (6268): 48-52. PMID26678875.
^Han BG, Kim KH, Lee SJ, Jeong KC, Cho JW, Noh KH, Kim TW, Kim SJ, Yoon HJ, Suh SW, Lee S, Lee BI (2012). “Helical repeat structure of apoptosis inhibitor 5 reveals protein-protein interaction modules”. J. Biol. Chem.287 (14): 10727-10737. PMID22334682.
^Sagermann M, Stevens TH, Matthews BW (2001). “Crystal structure of the regulatory subunit H of the V-type ATPase of Saccharomyces cerevisiae”. Proc. Natl. Acad. Sci. USA.98 (13): 7134-7139. PMID11416198.
^Stein AJ, Fuchs G, Fu C, Wolin SL, Reinisch KM. (2005). “Structural insights into RNA quality control: the Ro autoantigen binds misfolded RNAs via its central cavity”. Cell121 (4): 529-539. PMID15907467.
^Xiang K, Nagaike T, Xiang S, Kilic T, Beh MM, Manley JL, Tong L (2010). “Crystal structure of the human symplekin-Ssu72-CTD phosphopeptide complex”. Nature467 (7316): 729-733. PMID20861839.
^Sun W, Zhu YJ, Wang Z, Zhong Q, Gao F, Lou J, Gong W, Xu W (2013). “Crystal structure of the yeast TSC1 core domain and implications for tuberous sclerosis pathological mutations”. Nat. Commun.4: 2135. PMID23857276.
^Dessau M, Halimi Y, Erez T, Chomsky-Hecht O, Chamovitz DA, Hirsch JA (2008). “The Arabidopsis COP9 signalosome subunit 7 is a model PCI domain protein with subdomains involved in COP9 signalosome assembly”. Plant Cell20 (10): 2815-2834. PMID18854373.
^Wu X, Chi RJ, Baskin JM, Lucast L, Burd CG, De Camilli P, Reinisch KM (2014). “Structural insights into assembly and regulation of the plasma membrane phosphatidylinositol 4-kinase complex”. Dev. Cell28 (1): 19-29. PMID24360784.
^Cherepanov P, Sun ZY, Rahman S, Maertens G, Wagner G, Engelman A (2005). “Solution structure of the HIV-1 integrase-binding domain in LEDGF/p75”. Nat. Struct. Mol. Biol.12 (6): 526-532. PMID15895093.
^Andrade MA, Petosa C, O'Donoghue SI, Müller CW, Bork P. (2001). “Comparison of ARM and HEAT protein repeats”. J. Mol. Biol.309 (1): 1-18. PMID11491282.
^Edwards TA, Pyle SE, Wharton RP, Aggarwal AK (2001). “Structure of Pumilio reveals similarity between RNA and peptide binding motifs”. Cell105 (2): 281-289. PMID11336677.
^Rubinson EH, Eichman BF (2012). “Nucleic acid recognition by tandem helical repeats”. Curr Opin Struct Biol22 (1): 101-109. PMID22154606.