HEATリピート

ヒートリピート
インポーチンβとインポーチンα IBBドメインの複合体の構造[1]
識別子
略号 HEAT
Pfam PF03810
Pfam clan CL0020
InterPro IPR001494
SMART SM000913
PROSITE PS50166
SCOP 1QGK
SUPERFAMILY 1QGK
利用可能な蛋白質構造:
Pfam structures
PDB RCSB PDB; PDBe; PDBj
PDBsum structure summary
PDB 1QGK
テンプレートを表示

HEATリピート(ひーとりぴーと:HEAT repeats)は、多くのタンパク質に見られるリピート配列(構造)のひとつ[2]。ひとつのユニットは、30-40アミノ酸残基からなり、2本の両親媒性ヘリックスが折り畳まれた構造をつくる。このユニットが数十回繰り返されると、弾力性に富むソレノイド状構造を形成する[3][4][5]

HEATリピートの名前の由来

HEATの名前は、このリピート配列を共有する代表的な4つのタンパク質の頭文字に由来する:Huntingtin (ハンチントン病の責任タンパク質ハンチンチン), Elongation factor 3 (EF3)(タンパク質合成伸長因子), Protein phosphatase 2A (PP2A) A subunit(プロテインホスファターゼ2AのAサブユニット) , TOR1 (target of rapamycin)(シグナル伝達に関わるタンパク質キナーゼ[6]

様々なHEATタンパク質とその構造

HEATリピートタンパク質の代表例として知られているものには、核-細胞質間輸送因子インポーチンβ (karyopherin βとも呼ばれる) ファミリー[7]コンデンシンコヒーシンの制御サブユニット[8]セパレース[9]ATM (Ataxia telangiectasia mutated) やATR (Ataxia telangiectasia and Rad3 related)を含むPIKKs (phosphatidylinositol 3-kinase-related protein kinases)[10][11]微小管結合タンパク質XMAP215/Dis1/TOG[12]とCLASP[13]などがある。このようにHEATリピートをもつタンパク質の細胞内機能は多彩である。

これまでに、構造が解かれているHEATリピートタンパク質には以下のものがある。

  • 転写制御
    • 基本転写因子TFIIDのTAF6サブユニット[26]
    • TBP制御因子Mot1(Modifier of transcription 1)[27]
    • 転写開始因子Rrn3[28]
  • その他
    • API5 (Apoptosis inhibitor 5)[61]
    • V型ATPaseのHサブユニット[62]
    • 全身性エリテマトーデスの免疫応答の自己抗原Ro[63]
    • 細胞質ポリアデニル複合体symplekin[64]
    • 癌抑制遺伝子Tsc1[65]
    • COP9シグナロソームのサブユニット7(CSN7)[66]
    • PI4キナーゼStt4複合体のサブユニットEFR3[67]
    • レンズ上皮由来増殖因子LEDGFのIBD (HIV-1 integrase binding domain)[68]

類似の構造をもつリピート配列

HEATリピートと類似の構造をもつリピート配列として、アルマジロリピート(Armadillo [ARM] repeat)[69]、やPUFリピート(Pumilio/fem-3 mRNA binding factor [PUF] repeat[70][71])がある。

引用文献

  1. ^ a b Cingolani G, Petosa C, Weis K, Müller CW (1999). “Structure of importin-beta bound to the IBB domain of importin-alpha”. Nature 399 (6733): 221-229. PMID 10353244. 
  2. ^ Yoshimura SH, Hirano T (2016). “HEAT repeats - versatile arrays of amphiphilic helices working in crowded environments?”. J. Cell Sci. 129 (21): 3963-3970. PMID 27802131. 
  3. ^ Grinthal A, Adamovic I, Weiner B, Karplus M, Kleckner N (2010). “PR65, the HEAT-repeat scaffold of phosphatase PP2A, is an elastic connector that links force and catalysis”. Proc. Natl. Acad. Sci. USA. 107 (6): 2467-2472. PMID 20133745. 
  4. ^ Kappel C, Zachariae U, Dölker N, Grubmüller H (2010). “An unusual hydrophobic core confers extreme flexibility to HEAT repeat proteins”. Biophys. J. 99 (5): 1596-1603. PMID 20816072. 
  5. ^ Yoshimura SH, Kumeta M, Takeyasu K (2014). “Structural mechanism of nuclear transport mediated by importin β and flexible amphiphilic proteins”. Structure 22 (12): 1699-1710. PMID 25435324. 
  6. ^ Andrade MA, Bork P (1995). “HEAT repeats in the Huntington's disease protein”. Nat. Genet. 11 (2): 115-116. PMID 7550332. 
  7. ^ Malik HS, Eickbush TH, Goldfarb DS (1997). “Evolutionary specialization of the nuclear targeting apparatus”. Proc. Natl. Acad. Sci. USA. 94 (25): 13738-13742. PMID 9391096. 
  8. ^ Neuwald AF, Hirano T (2000). “HEAT repeats associated with condensins, cohesins, and other complexes involved in chromosome-related functions”. Genome Res. 10 (10): 1445-52. PMID 11042144. 
  9. ^ Jäger H, Herzig B, Herzig A, Sticht H, Lehner CF, Heidmann S (2004). “Structure predictions and interaction studies indicate homology of separase N-terminal regulatory domains and Drosophila THR”. Cell Cycle 3 (3): 182-188. PMID 14712087. 
  10. ^ Perry J, Kleckner N (2003). “The ATRs, ATMs, and TORs are giant HEAT repeat proteins”. Cell 112 (2): 151-155. PMID 12553904. 
  11. ^ Baretić D, Williams RL (2014). “PIKKs--the solenoid nest where partners and kinases meet”. Curr. Opin. Struct. Biol. 29: 134-142. PMID 25460276. 
  12. ^ Ohkura H, Garcia MA, Toda T (2001). “Dis1/TOG universal microtubule adaptors - one MAP for all?”. J. Cell Sci. 114 (Pt 21): 3805-3812. PMID 11719547. 
  13. ^ Al-Bassam J, Kim H, Brouhard G, van Oijen A, Harrison SC, Chang F (2010). “CLASP promotes microtubule rescue by recruiting tubulin dimers to the microtubule”. Dev. Cell 19 (2): 245-258. PMID 20708587. 
  14. ^ Groves MR, Hanlon N, Turowski P, Hemmings BA, Barford D (1999). “The structure of the protein phosphatase 2A PR65/A subunit reveals the conformation of its 15 tandemly repeated HEAT motifs”. Cell 96 (1): 99-110. PMID 9989501. 
  15. ^ Xu Y, Xing Y, Chen Y, Chao Y, Lin Z, Fan E, Yu JW, Strack S, Jeffrey PD, Shi Y (2006). “Structure of the protein phosphatase 2A holoenzyme”. Cell 127 (6): 1239-1251. PMID 17174897. 
  16. ^ Cho US, Xu W (2007). “Crystal structure of a protein phosphatase 2A heterotrimeric holoenzyme”. Nature 445 (7123): 53-57. PMID 17086192. 
  17. ^ Goldenberg SJ, Cascio TC, Shumway SD, Garbutt KC, Liu J, Xiong Y, Zheng N (2004). “Structure of the Cand1-Cul1-Roc1 complex reveals regulatory mechanisms for the assembly of the multisubunit cullin-dependent ubiquitin ligases”. Cell 119 (4): 517-528. PMID 15537541. 
  18. ^ Takagi K, Kim S, Yukii H, Ueno M, Morishita R, Endo Y, Kato K, Tanaka K, Saeki Y, Mizushima T (2012). “Structural basis for specific recognition of Rpt1p, an ATPase subunit of 26 S proteasome, by proteasome-dedicated chaperone Hsm3p”. J. Biol. Chem. 287 (15): 12172-12182. PMID 22334676. 
  19. ^ Chook YM, Blobel G (1999). “Structure of the nuclear transport complex karyopherin-beta2-Ran x GppNHp”. Nature 399 (6733): 230-237. PMID 10353245. 
  20. ^ Bayliss R, Littlewood T, Stewart M (2000). “Structural basis for the interaction between FxFG nucleoporin repeats and importin-beta in nuclear trafficking”. Cell 102 (1): 99-108. PMID 10929717. 
  21. ^ Matsuura Y, Stewart M (2004). “Structural basis for the assembly of a nuclear export complex”. Nature 432 (7019): 872-877. PMID 15602554. 
  22. ^ Imasaki T, Shimizu T, Hashimoto H, Hidaka Y, Kose S, Imamoto N, Yamada M, Sato M (2007). “Structural basis for substrate recognition and dissociation by human transportin 1”. Mol. Cell 28 (1): 57-67. PMID 17936704. 
  23. ^ Montpetit B, Thomsen ND, Helmke KJ, Seeliger MA, Berger JM, Weis K (2011). “A conserved mechanism of DEAD-box ATPase activation by nucleoporins and InsP6 in mRNA export”. Nature 472 (7342): 238-242. PMID 21441902. 
  24. ^ Andersen KR, Onischenko E, Tang JH, Kumar P, Chen JZ, Ulrich A, Liphardt JT, Weis K, Schwartz TU (2013). “Scaffold nucleoporins Nup188 and Nup192 share structural and functional properties with nuclear transport receptors”. eLife 11 (2): e00745. PMID 23795296. 
  25. ^ Stuwe T, Lin DH, Collins LN, Hurt E, Hoelz A (2014). “Evidence for an evolutionary relationship between the large adaptor nucleoporin Nup192 and karyopherins”. Proc. Natl. Add. Sci. 111 (7): 2530-2535. PMID 24505056. 
  26. ^ Scheer E, Delbac F, Tora L, Moras D, Romier C (2012). “TFIID TAF6-TAF9 complex formation involves the HEAT repeat-containing C-terminal domain of TAF6 and is modulated by TAF5 protein”. J. Biol. Chem. 287 (33): 27580-27592. PMID 22696218. 
  27. ^ Wollmann P, Cui S, Viswanathan R, Berninghausen O, Wells MN, Moldt M, Witte G, Butryn A, Wendler P, Beckmann R, Auble DT, Hopfner KP (2011). “Structure and mechanism of the Swi2/Snf2 remodeller Mot1 in complex with its substrate TBP”. Nature 475 (7356): 403-407. PMID 21734658. 
  28. ^ Blattner C, Jennebach S, Herzog F, Mayer A, Cheung AC, Witte G, Lorenzen K, Hopfner KP, Heck AJ, Aebersold R, Cramer P (2011). “Molecular basis of Rrn3-regulated RNA polymerase I initiation and cell growth”. Genes Dev. 25 (19): 2093-2105. PMID 21940764. 
  29. ^ Andersen CB, Becker T, Blau M, Anand M, Halic M, Balar B, Mielke T, Boesen T, Pedersen JS, Spahn CM, Kinzy TG, Andersen GR, Beckmann R (2006). “Structure of eEF3 and the mechanism of transfer RNA release from the E-site”. Nature 443 (7112): 663-668. PMID 16929303. 
  30. ^ Marcotrigiano J, Lomakin IB, Sonenberg N, Pestova TV, Hellen CU, Burley SK (2001). “A conserved HEAT domain within eIF4G directs assembly of the translation initiation machinery”. Moll. Cell 7 (1): 193-203. PMID 11172724. 
  31. ^ Nozawa K, Ishitani R, Yoshihisa T, Sato M, Arisaka F, Kanamaru S, Dohmae N, Mangroo D, Senger B, Becker HD, Nureki O (2013). “Crystal structure of Cex1p reveals the mechanism of tRNA trafficking between nucleus and cytoplasm”. Nucleic Acids Res. 41 (6): 3901-3914. PMID 23396276. 
  32. ^ Sibanda BL, Chirgadze DY, Blundell TL (2010). “Crystal structure of DNA-PKcs reveals a large open-ring cradle comprised of HEAT repeats”. Nature 463 (7277): 118-121. PMID 20023628. 
  33. ^ Chaplin AK, Hardwick SW, Liang S, Stavridi AK, Hnizda A, Cooper LR, De Oliveira TM, Chirgadze DY, Blundell TL (2021). “Dimers of DNA-PK create a stage for DNA double-strand break repair”. Nat Struct Mol Biol. PMID 33077952. 
  34. ^ Chen X, Xu X, Chen Y, Cheung JC, Wang H, Jiang J, de Val N, Fox T, Gellert M, Yang W (2021). “Structure of an activated DNA-PK and its implications for NHEJ”. Mol Cell 81 (4): 801-810.e3. PMID 33385326. 
  35. ^ Kowal P, Gurtan AM, Stuckert P, D'Andrea AD, Ellenberger T (2007). “Structural determinants of human FANCF protein that function in the assembly of a DNA damage signaling complex”. J. Biol. Chem. 282 (3): 2047-2055. PMID 17082180. 
  36. ^ Rubinson EH, Gowda AS, Spratt TE, Gold B, Eichman BF (2010). “An unprecedented nucleic acid capture mechanism for excision of DNA damage”. Nature 468 (7322): 406-411. PMID 20927102. 
  37. ^ Takai H, Xie Y, de Lange T, Pavletich NP (2010). “Tel2 structure and function in the Hsp90-dependent maturation of mTOR and ATR complexes”. Genes Dev. 24 (18): 2019-2030. PMID 20801936. 
  38. ^ Hara K, Zheng G, Qu Q, Liu H, Ouyang Z, Chen Z, Tomchick DR, Yu H (2014). “Structure of cohesin subcomplex pinpoints direct shugoshin-Wapl antagonism in centromeric cohesion”. Nat. Struct. Mol. Biol. 21 (10): 864-870. PMID 25173175. 
  39. ^ Roig MB, Löwe J, Chan KL, Beckouët F, Metson J, Nasmyth K (2014). “Structure and function of cohesin's Scc3/SA regulatory subunit.”. FEBS Lett 588 (20): 3692-3702. PMID 25171859. 
  40. ^ Li Y, Muir K, Bowler MW, Metz J, Haering CH, Panne D (2018). “Structural basis for Scc3-dependent cohesin recruitment to chromatin.”. eLife 7: e38356. doi: 10.7554/eLife.38356. PMID 30109982. 
  41. ^ a b Kikuchi S, Borek DM, Otwinowski Z, Tomchick DR, Yu H (2016). “Crystal structure of the cohesin loader Scc2 and insight into cohesinopathy”. Proc Natl Acad Sci USA 113 (44): 12444-12449. PMID 27791135. 
  42. ^ a b Chao WC, Murayama Y, Muñoz S, Jones AW, Wade BO, Purkiss AG, Hu XW, Borg A, Snijders AP, Uhlmann F, Singleton MR (2017). “Structure of the cohesin loader Scc2”. Nat Commun 8: 13952. PMID 28059076. 
  43. ^ Shi Z, Gao H, Bai XC, Yu H (2020). “Cryo-EM structure of the human cohesin-NIPBL-DNA complex”. Science: eabb0981. PMID 32409525. 
  44. ^ Higashi TL, Eickhoff P, Sousa JS, Locke J, Nans A, Flynn HR, Snijders AP, Papageorgiou G, O'Reilly N, Chen ZA, O'Reilly FJ, Rappsilber J, Costa A, Uhlmann F (2020). “A Structure-Based Mechanism for DNA Entry into the Cohesin Ring”. Mol Cell 79 (6): 917-933. PMID 32755595. 
  45. ^ Chatterjee A, Zakian S, Hu XW, Singleton MR (2013). “Structural insights into the regulation of cohesion establishment by Wpl1”. EMBO J. 32 (5): 677-687. PMID 23395900. 
  46. ^ Ouyang Z, Zheng G, Song J, Borek DM, Otwinowski Z, Brautigam CA, Tomchick DR, Rankin S, Yu H (2013). “Structure of the human cohesin inhibitor Wapl”. Proc. Natl. Acad. Sci. USA 110 (28): 11355-11360. PMID 23776203. 
  47. ^ Muir KW, Kschonsak M, Li Y, Metz J, Haering CH, Panne D. (2016). “Structure of the Pds5-Scc1 complex and implications for cohesin function”. Cell Rep. PMID 26923589. 
  48. ^ Lee BG, Roig MB, Jansma M, Petela N, Metson J, Nasmyth K, Löwe J (2016). “Crystal structure of the cohesin gatekeeper Pds5 and in complex with kleisin Scc1”. Cell Rep. PMID 26923598. 
  49. ^ Ouyang Z, Zheng G, Tomchick DR, Luo X, Yu H. (2016). “Structural basis and IP6 requirement for Pds5-dependent cohesin dynamics”. Mol Cell 62 (2): 248-259. PMID 26971492. 
  50. ^ Bachmann G, Richards MW, Winter A, Beuron F, Morris E, Bayliss R (2016). “A closed conformation of the Caenorhabditis elegans separase-securin complex”. Open Biol 6 (4): 160032. doi: 10.1098/rsob.160032. PMID 27249343. 
  51. ^ Luo S, Tong L (2017). “Molecular mechanism for the regulation of yeast separase by securin”. Nature 542 (7640): 255-259. PMID 28146474. 
  52. ^ Boland A, Martin TG, Zhang Z, Yang J, Bai XC, Chang L, Scheres SH, Barford D (2017). “Cryo-EM structure of a metazoan separase-securin complex at near-atomic resolution”. Nat Struct Mol Biol 24 (4): 414-418. PMID 28263324. 
  53. ^ Kschonsak M, Merkel F, Bisht S, Metz J, Rybin V, Hassler M, Haering CH (2017). “Structural basis for a safety-belt mechanism that anchors condensin to chromosomes”. Cell 171 (3): 588-600.e24. PMID 28988770. 
  54. ^ Hara K, Kinoshita K, Migita T, Murakami K, Shimizu K, Takeuchi K, Hirano T, Hashimoto H (2019). “Structural basis of HEAT-kleisin interactions in the human condensin I subcomplex”. EMBO Rep: pii: e47183. doi: 10.15252/embr.201847183. PMID 30858338. 
  55. ^ Hassler M, Shaltiel IA, Kschonsak M, Simon B, Merkel F, Thärichen L, Bailey HJ, Macošek J, Bravo S, Metz J, Hennig J, Haering CH (2019). “Structural basis of an asymmetric condensin ATPase cycle”. Mol Cell 74 (6): 1175-1188.e24. PMID 31226277. 
  56. ^ Shaltiel IA, Datta S, Lecomte L, Hassler M, Kschonsak M, Bravo S, Stober C, Ormanns J, Eustermann S, Haering CH. (2022). “A hold-and-feed mechanism drives directional DNA loop extrusion by condensin”. Science 376 (6597): 1087-1094. PMID 35653469. 
  57. ^ Al-Bassam J, Larsen NA, Hyman AA, Harrison SC (2007). “Crystal structure of a TOG domain: conserved features of XMAP215/Dis1-family TOG domains and implications for tubulin binding.”. Structure 15 (3): 355-362. PMID 17355870. 
  58. ^ Slep KC, Vale RD. (2007). “Structural basis of microtubule plus end tracking by XMAP215, CLIP-170, and EB1”. Mol. Cell 27 (6): 976-991. PMID 17889670. 
  59. ^ Ayaz P, Ye X, Huddleston P, Brautigam CA, Rice LM. (2012). “A TOG:αβ-tubulin complex structure reveals conformation-based mechanisms for a microtubule polymerase.”. Science 337 (6096): 3731-3736. PMID 22904013. 
  60. ^ Aylett CH, Sauer E, Imseng S, Boehringer D, Hall MN, Ban N, Maier T (2016). “Architecture of human mTOR complex 1”. Science 351 (6268): 48-52. PMID 26678875. 
  61. ^ Han BG, Kim KH, Lee SJ, Jeong KC, Cho JW, Noh KH, Kim TW, Kim SJ, Yoon HJ, Suh SW, Lee S, Lee BI (2012). “Helical repeat structure of apoptosis inhibitor 5 reveals protein-protein interaction modules”. J. Biol. Chem. 287 (14): 10727-10737. PMID 22334682. 
  62. ^ Sagermann M, Stevens TH, Matthews BW (2001). “Crystal structure of the regulatory subunit H of the V-type ATPase of Saccharomyces cerevisiae”. Proc. Natl. Acad. Sci. USA. 98 (13): 7134-7139. PMID 11416198. 
  63. ^ Stein AJ, Fuchs G, Fu C, Wolin SL, Reinisch KM. (2005). “Structural insights into RNA quality control: the Ro autoantigen binds misfolded RNAs via its central cavity”. Cell 121 (4): 529-539. PMID 15907467. 
  64. ^ Xiang K, Nagaike T, Xiang S, Kilic T, Beh MM, Manley JL, Tong L (2010). “Crystal structure of the human symplekin-Ssu72-CTD phosphopeptide complex”. Nature 467 (7316): 729-733. PMID 20861839. 
  65. ^ Sun W, Zhu YJ, Wang Z, Zhong Q, Gao F, Lou J, Gong W, Xu W (2013). “Crystal structure of the yeast TSC1 core domain and implications for tuberous sclerosis pathological mutations”. Nat. Commun. 4: 2135. PMID 23857276. 
  66. ^ Dessau M, Halimi Y, Erez T, Chomsky-Hecht O, Chamovitz DA, Hirsch JA (2008). “The Arabidopsis COP9 signalosome subunit 7 is a model PCI domain protein with subdomains involved in COP9 signalosome assembly”. Plant Cell 20 (10): 2815-2834. PMID 18854373. 
  67. ^ Wu X, Chi RJ, Baskin JM, Lucast L, Burd CG, De Camilli P, Reinisch KM (2014). “Structural insights into assembly and regulation of the plasma membrane phosphatidylinositol 4-kinase complex”. Dev. Cell 28 (1): 19-29. PMID 24360784. 
  68. ^ Cherepanov P, Sun ZY, Rahman S, Maertens G, Wagner G, Engelman A (2005). “Solution structure of the HIV-1 integrase-binding domain in LEDGF/p75”. Nat. Struct. Mol. Biol. 12 (6): 526-532. PMID 15895093. 
  69. ^ Andrade MA, Petosa C, O'Donoghue SI, Müller CW, Bork P. (2001). “Comparison of ARM and HEAT protein repeats”. J. Mol. Biol. 309 (1): 1-18. PMID 11491282. 
  70. ^ Edwards TA, Pyle SE, Wharton RP, Aggarwal AK (2001). “Structure of Pumilio reveals similarity between RNA and peptide binding motifs”. Cell 105 (2): 281-289. PMID 11336677. 
  71. ^ Rubinson EH, Eichman BF (2012). “Nucleic acid recognition by tandem helical repeats”. Curr Opin Struct Biol 22 (1): 101-109. PMID 22154606. 

 

 

Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9

Portal di Ensiklopedia Dunia