FUS(fused in sarcoma)は、ヒトではFUS遺伝子にコードされるタンパク質である。TLS(translocated in liposarcoma)、hnRNP P2(heterogeneous nuclear ribonucleoprotein P2)としても知られる[5][6][7][8][9][10]。
In vitroでは、FUS/TLSはRNA、一本鎖DNA、そして(低い親和性で)二本鎖DNAに結合することが示されている[7][9][18][19][20][21]。FUS/TLSのRNAやDNAへの結合の配列特異性ははっきりしていないが、SELEX法(英語版)では、FUS/TLSが結合するRNA配列の約半数に共通するGGUGモチーフが同定されている[22]。GGUGモチーフはRRMではなく、ジンクフィンガードメインによって認識されていることが後に提唱されている。さらに、FUS/TLSはアクチン安定化タンパク質Nd1-LのmRNAの3' UTR上の比較的長い領域に結合することが知られており、特定の短い配列を認識するのではなく、複数のモチーフや二次構造と相互作用することが示唆されている[23]。FUS/TLSはin vitroではヒトのテロメアRNA(UUAGGG)4や一本鎖テロメアDNAにも結合する[24]。
^“Localization of the chromosomal breakpoints of the t(12;16) in liposarcoma to subbands 12q13.3 and 16p11.2”. Cancer Genet Cytogenet48 (1): 101–7. (Aug 1990). doi:10.1016/0165-4608(90)90222-V. PMID2372777.
^ ab“Fusion of the dominant negative transcription regulator CHOP with a novel gene FUS by translocation t(12;16) in malignant liposarcoma”. Nat Genet4 (2): 175–80. (Sep 1993). doi:10.1038/ng0693-175. PMID7503811.
^ abc“TLS/FUS fusion domain of TLS/FUS-erg chimeric protein resulting from the t(16;21) chromosomal translocation in human myeloid leukemia functions as a transcriptional activation domain”. Oncogene9 (12): 3717–29. (December 1994). PMID7970732.
^ ab“The N-terminal domain of human TAFII68 displays transactivation and oncogenic properties”. Oncogene18 (56): 8000–10. (December 1999). doi:10.1038/sj.onc.1203207. PMID10637511.
^“A novel effector domain from the RNA-binding protein TLS or EWS is required for oncogenic transformation by CHOP”. Genes Dev.8 (21): 2513–26. (November 1994). doi:10.1101/gad.8.21.2513. PMID7958914.
^“Detection of arginine dimethylated peptides by parallel precursor ion scanning mass spectrometry in positive ion mode”. Anal. Chem.75 (13): 3107–14. (July 2003). doi:10.1021/ac026283q. PMID12964758.
^“Domain architectures and characterization of an RNA-binding protein, TLS”. J. Biol. Chem.279 (43): 44834–40. (October 2004). doi:10.1074/jbc.M408552200. PMID15299008.
^“Expression patterns of the human sarcoma-associated genes FUS and EWS and the genomic structure of FUS”. Genomics37 (1): 1–8. (October 1996). doi:10.1006/geno.1996.0513. PMID8921363.
^“TLS (FUS) binds RNA in vivo and engages in nucleo-cytoplasmic shuttling”. J. Cell Sci.110 (15): 1741–50. (August 1997). doi:10.1242/jcs.110.15.1741. PMID9264461.
^“Human 75-kDa DNA-pairing protein is identical to the pro-oncoprotein TLS/FUS and is able to promote D-loop formation”. J. Biol. Chem.274 (48): 34337–42. (November 1999). doi:10.1074/jbc.274.48.34337. PMID10567410.
^“Identification of an RNA binding specificity for the potential splicing factor TLS”. J. Biol. Chem.276 (9): 6807–16. (March 2001). doi:10.1074/jbc.M008304200. PMID11098054.
^“TLS facilitates transport of mRNA encoding an actin-stabilizing protein to dendritic spines”. J. Cell Sci.118 (Pt 24): 5755–65. (December 2005). doi:10.1242/jcs.02692. PMID16317045.
^“Identification of RNA binding specificity for the TET-family proteins”. Nucleic Acids Symp Ser (Oxf)52 (52): 213–4. (2008). doi:10.1093/nass/nrn108. PMID18776329.
^“TLS, EWS and TAF15: a model for transcriptional integration of gene expression”. Brief Funct Genomic Proteomic5 (1): 8–14. (March 2006). doi:10.1093/bfgp/ell015. PMID16769671.
^“TLS (translocated-in-liposarcoma) is a high-affinity interactor for steroid, thyroid hormone, and retinoid receptors”. Mol. Endocrinol.12 (1): 4–18. (January 1998). doi:10.1210/mend.12.1.0043. PMID9440806.
^ ab“The transcription factor Spi-1/PU.1 interacts with the potential splicing factor TLS”. J. Biol. Chem.273 (9): 4838–42. (February 1998). doi:10.1074/jbc.273.9.4838. PMID9478924.
^ ab“Involvement of the pro-oncoprotein TLS (translocated in liposarcoma) in nuclear factor-kappa B p65-mediated transcription as a coactivator”. J. Biol. Chem.276 (16): 13395–401. (April 2001). doi:10.1074/jbc.M011176200. PMID11278855.
^“Characterization of two evolutionarily conserved, alternatively spliced nuclear phosphoproteins, NFAR-1 and -2, that function in mRNA processing and interact with the double-stranded RNA-dependent protein kinase, PKR”. J. Biol. Chem.276 (34): 32300–12. (August 2001). doi:10.1074/jbc.M104207200. PMID11438536.
^“Identification of methylated proteins by protein arginine N-methyltransferase 1, PRMT1, with a new expression cloning strategy”. Biochim. Biophys. Acta1591 (1–3): 1–10. (August 2002). doi:10.1016/S0167-4889(02)00202-1. PMID12183049.
“Inhibition of apoptosis by normal and aberrant Fli-1 and erg proteins involved in human solid tumors and leukemias”. Oncogene14 (11): 1259–68. (March 1997). doi:10.1038/sj.onc.1201099. PMID9178886.
“Characterization of the CHOP breakpoints and fusion transcripts in myxoid liposarcomas with the 12;16 translocation”. Cancer Res.54 (24): 6500–3. (1995). PMID7987849.
“An RNA-binding protein gene, TLS/FUS, is fused to ERG in human myeloid leukemia with t(16;21) chromosomal translocation”. Cancer Res.54 (11): 2865–8. (1994). PMID8187069.
“Expression patterns of the human sarcoma-associated genes FUS and EWS and the genomic structure of FUS”. Genomics37 (1): 1–8. (1997). doi:10.1006/geno.1996.0513. PMID8921363.
“TLS (FUS) binds RNA in vivo and engages in nucleo-cytoplasmic shuttling”. J. Cell Sci.110 (15): 1741–50. (1997). doi:10.1242/jcs.110.15.1741. PMID9264461.
“TLS (translocated-in-liposarcoma) is a high-affinity interactor for steroid, thyroid hormone, and retinoid receptors”. Mol. Endocrinol.12 (1): 4–18. (1998). doi:10.1210/mend.12.1.0043. PMID9440806.
“The transcription factor Spi-1/PU.1 interacts with the potential splicing factor TLS”. J. Biol. Chem.273 (9): 4838–42. (1998). doi:10.1074/jbc.273.9.4838. PMID9478924.
“The transcriptional repressor ZFM1 interacts with and modulates the ability of EWS to activate transcription”. J. Biol. Chem.273 (29): 18086–91. (1998). doi:10.1074/jbc.273.29.18086. PMID9660765.
“Oncoprotein TLS interacts with serine-arginine proteins involved in RNA splicing”. J. Biol. Chem.273 (43): 27761–4. (1998). doi:10.1074/jbc.273.43.27761. PMID9774382.
“Human POMp75 is identified as the pro-oncoprotein TLS/FUS: both POMp75 and POMp100 DNA homologous pairing activities are associated to cell proliferation”. Oncogene18 (31): 4515–21. (1999). doi:10.1038/sj.onc.1203048. PMID10442642.
“Human 75-kDa DNA-pairing protein is identical to the pro-oncoprotein TLS/FUS and is able to promote D-loop formation”. J. Biol. Chem.274 (48): 34337–42. (1999). doi:10.1074/jbc.274.48.34337. PMID10567410.
“Proteomic analysis of NMDA receptor-adhesion protein signaling complexes”. Nat. Neurosci.3 (7): 661–9. (2000). doi:10.1038/76615. hdl:1842/742. PMID10862698.
“Involvement of the pro-oncoprotein TLS (translocated in liposarcoma) in nuclear factor-kappa B p65-mediated transcription as a coactivator”. J. Biol. Chem.276 (16): 13395–401. (2001). doi:10.1074/jbc.M011176200. PMID11278855.
“Characterization of two evolutionarily conserved, alternatively spliced nuclear phosphoproteins, NFAR-1 and -2, that function in mRNA processing and interact with the double-stranded RNA-dependent protein kinase, PKR”. J. Biol. Chem.276 (34): 32300–12. (2001). doi:10.1074/jbc.M104207200. PMID11438536.