超整数超準解析における超整数(ちょうせいすう、英: hyperinteger; 超準整数)は、その整数部分が自身に等しい超実数(超準実数)を言う。超整数には、通常の整数である有限超整数のほかに無限大超整数も含まれる。無限大超整数の例は、整数列 (1, 2, 3, …) が属する(超実数の超冪構成の意味での)同値類をとればよい。 定義標準整数部分 は任意の実数 x に対し x を超えない最大の整数に等しいものと定義されるものであった。これに超準解析における移行原理を適用すれば、その自然延長として超準整数部函数 が任意の超実数 x に対して定義できる。
したがって、超整数全体の成す集合は、超実数全体の成す集合のこの超準的な整数部函数による像に等しい。 内的集合超整数全体の成す集合 *ℤ は超実数全体の成す集合 *ℝ の内的部分集合であり、対して有限超整数全体の成す集合 ℤ は内的部分集合ではない。補集合 *ℤ ∖ ℤ の元は(文献にもよるが)超準 (non-standard), 無限 (unlimited), 無限大 (infinite) 超整数と呼ばれる。無限大超整数の逆数は必ず無限小になる。 非負の超整数はしばしば超自然数 (hypernatural number) と呼ばれ、先と同じように有限超自然数および無限大超自然数全体の成す集合はそれぞれ ℕ および *ℕ と書かれる。後者がスコーレムの意味での算術の超準モデルを与えるものであることを注意しておく。 参考文献
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia