調和数列調和数列(ちょうわすうれつ、harmonic sequence または harmonic progression)とは、各項の逆数を取ると等差数列となる数列である。ピタゴラス音律では、ドの弦の長さを 1 とすると、ソは 2/3、1オクターブ高いドは 1/2 の長さになる。各項の逆数はそれぞれ 1, 3/2, 2 となり、公差が 1/2 の等差数列となる。よって、1, 2/3, 1/2 は調和数列である。 一般項と漸化式調和数列とは、一般項 hn が a を初項とし定数 d を用いて と表せる数列 {hn} のことである。ここで −1/d は自然数でないとする。このとき、a は初項である。各項は隣接する2項の調和平均になっている(調和中項)。調和数列の極限は 0 である。例としては、 などが挙げられる。 n 番目の項と m 番目の項の関係を表す漸化式は である。 この数列の隣接2項間漸化式は である。 調和数列の項の積一般項 , 項数 n の調和数列 {hn} の総乗は で表される。ここで、 は上昇階乗冪(x から 1 ずつ増やしながら x + n − 1 までの n 個の総乗(階乗の類似物)、Γ は ガンマ関数を表す。 調和数列の逆数和調和数列は各項の逆数を取ると等差数列になることから、等差数列の関係から調和数列の関係を得ることができる。 一般項 , 項数 n の調和数列 {hn} の全ての項の逆数和は、次の式で表される。 調和数列の級数になる。これは発散級数である。 |
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia