^Chippaux, JP; Goyffon, M (2006). “[Venomous and poisonous animals--I. Overview].” (フランス語). Médecine Tropicale66 (3): 215–20. ISSN0025-682X. PMID16924809.
^“Poison vs. Venom”. Australian Academy of Science (3 November 2017). 17 April 2022閲覧。
^Nelsen, D. R., Nisani, Z., Cooper, A. M., Fox, G. A., Gren, E. C., Corbit, A. G., & Hayes, W. K. (2014). "Poisons, toxungens, and venoms: redefining and classifying toxic biological secretions and the organisms that employ them". Biological Reviews, 89(2), 450-465. doi:10.1111/brv.12062. PMID24102715.
^Raffray, M.; Cohen, G. M. (1997). “Apoptosis and necrosis in toxicology: a continuum or distinct modes of cell death?”. Pharmacology & Therapeutics75 (3): 153–177. doi:10.1016/s0163-7258(97)00037-5. PMID9504137.
^Dutertre, Sébastien; Lewis, Richard J. (2006). “Toxin insights into nicotinic acetylcholine receptors”. Biochemical Pharmacology72 (6): 661–670. doi:10.1016/j.bcp.2006.03.027. PMID16716265.
^Nicastro, G. (May 2003). Franzoni, L.; de Chiara, C.; Mancin, A. C.; Giglio, J. R.; Spisni, A.. “Solution structure of crotamine, a Na+ channel affecting toxin from Crotalus durissus terrificus venom”. Eur. J. Biochem.270 (9): 1969–1979. doi:10.1046/j.1432-1033.2003.03563.x. PMID12709056.
^Griffin, P. R.; Aird, S. D. (1990). “A new small myotoxin from the venom of the prairie rattlesnake (Crotalus viridis viridis)”. FEBS Letters274 (1): 43–47. doi:10.1016/0014-5793(90)81325-I. PMID2253781.
^Samejima, Y.; Aoki, Y.; Mebs, D. (1991). “Amino acid sequence of a myotoxin from venom of the eastern diamondback rattlesnake (Crotalus adamanteus)”. Toxicon29 (4): 461–468. doi:10.1016/0041-0101(91)90020-r. PMID1862521.
^Post Downing, Jeanne (1983). “Venom: Source of a Sex Pheromone in the Social Wasp Polistes fuscatus (Hymenoptera: Vespidae)”. Journal of Chemical Ecology9 (2): 259–266. doi:10.1007/bf00988043. PMID24407344.
^Post Downing, Jeanne (1984). “Alarm response to venom by social wasps Polistes exclamans and P. fuscatus”. Journal of Chemical Ecology10 (10): 1425–1433. doi:10.1007/BF00990313. PMID24318343.
^Baracchi, David (January 2012). “From individual to collective immunity: The role of the venom as antimicrobial agent in the Stenogastrinae wasp societies”. Journal of Insect Physiology58 (1): 188–193. doi:10.1016/j.jinsphys.2011.11.007. hdl:2158/790328. PMID22108024.
^Pinto, Antônio F. M.; Berger, Markus; Reck, José; Terra, Renata M. S.; Guimarães, Jorge A. (15 December 2010). “Lonomia obliqua venom: In vivo effects and molecular aspects associated with the hemorrhagic syndrome”. Toxicon56 (7): 1103–1112. doi:10.1016/j.toxicon.2010.01.013. PMID20114060.
^Graystock, Peter; Hughes, William O. H. (2011). “Disease resistance in a weaver ant, Polyrhachis dives, and the role of antibiotic-producing glands”. Behavioral Ecology and Sociobiology65 (12): 2319–2327. doi:10.1007/s00265-011-1242-y.
^Olivera, B. M.; Teichert, R. W. (2007). “Diversity of the neurotoxic Conus peptides: a model for concerted pharmacological discovery”. Molecular Interventions7 (5): 251–260. doi:10.1124/mi.7.5.7. PMID17932414.
^ abcSmith, William Leo; Wheeler, Ward C. (2006). “Venom Evolution Widespread in Fishes: A Phylogenetic Road Map for the Bioprospecting of Piscine Venoms”. Journal of Heredity97 (3): 206–217. doi:10.1093/jhered/esj034. PMID16740627.
^Nowak, R. T.; Brodie, E. D. (1978). “Rib Penetration and Associated Antipredator Adaptations in the Salamander Pleurodeles waltl (Salamandridae)”. Copeia1978 (3): 424–429. doi:10.2307/1443606. JSTOR1443606.
^Jared, Carlos; Mailho-Fontana, Pedro Luiz; Antoniazzi, Marta Maria et al. (2015-08-17). “Venomous Frogs Use Heads as Weapons”. Current Biology25 (16): 2166–2170. doi:10.1016/j.cub.2015.06.061. ISSN0960-9822. PMID26255851.
^Bauchot, Roland (1994). Snakes: A Natural History. Sterling. pp. 194–209. ISBN978-1-4027-3181-5
^“Snake Bites”. A. D. A. M. Inc (16 October 2017). 30 September 2018閲覧。
^Cantrell, F. L. (2003). “Envenomation by the Mexican beaded lizard: a case report”. Journal of Toxicology. Clinical Toxicology41 (3): 241–244. doi:10.1081/CLT-120021105. PMID12807305.
^Fry, B. G.; Wuster, W.; Ramjan, S. F. R.; Jackson, T.; Martelli, P.; Kini, R. M. 2003c. Analysis of Colubroidea snake venoms by liquid chromatography with mass spectrometry: Evolutionary and toxinological implications. Rapid Communications in Mass Spectrometry 17:2047-2062.
^Pal, S. K.; Gomes, A.; Dasgupta, S. C.; Gomes, A. (2002). “Snake venom as therapeutic agents: from toxin to drug development.”. Indian Journal of Experimental Biology40 (12): 1353–1358. PMID12974396.
^Dawkins, Richard; Krebs, John Richard; Maynard Smith, J.; Holliday, Robin (1979-09-21). “Arms races between and within species”. Proceedings of the Royal Society of London. Series B. Biological Sciences205 (1161): 489–511. Bibcode: 1979RSPSB.205..489D. doi:10.1098/rspb.1979.0081. PMID42057.
^McCabe, Thomas M.; Mackessy, Stephen P. (2015). Gopalakrishnakone, P.; Malhotra, Anita. eds. Evolution of Resistance to Toxins in Prey. Toxinology. Springer Netherlands. pp. 1–19. doi:10.1007/978-94-007-6727-0_6-1. ISBN978-94-007-6727-0
^Nuismer, Scott L.; Ridenhour, Benjamin J.; Oswald, Benjamin P. (2007). “Antagonistic Coevolution Mediated by Phenotypic Differences Between Quantitative Traits”. Evolution61 (8): 1823–1834. doi:10.1111/j.1558-5646.2007.00158.x. PMID17683426.
^Poran, Naomie S.; Coss, Richard G.; Benjamini, Eli (1987-01-01). “Resistance of California ground squirrels (Spermophilus Beecheyi) to the venom of the northern Pacific rattlesnake (Crotalus Viridis Oreganus): A study of adaptive variation”. Toxicon25 (7): 767–777. doi:10.1016/0041-0101(87)90127-9. ISSN0041-0101. PMID3672545.
^Coss, Richard G.; Poran, Naomie S.; Gusé, Kevin L.; Smith, David G. (1993-01-01). “Development of Antisnake Defenses in California Ground Squirrels (Spermophilus Beecheyi): II. Microevolutionary Effects of Relaxed Selection From Rattlesnakes”. Behaviour124 (1–2): 137–162. doi:10.1163/156853993X00542. ISSN0005-7959.
^Weinstein, Scott A.; DeWitt, Clement F.; Smith, Leonard A. (December 1992). “Variability of Venom-Neutralizing Properties of Serum from Snakes of the Colubrid Genus Lampropeltis”. Journal of Herpetology26 (4): 452. doi:10.2307/1565123. JSTOR1565123.
^Heatwole, Harold; Poran, Naomie S. (1995-02-15). “Resistances of Sympatric and Allopatric Eels to Sea Snake Venoms”. Copeia1995 (1): 136. doi:10.2307/1446808. JSTOR1446808.
^Heatwole, Harold; Powell, Judy (May 1998). “Resistance of eels (Gymnothorax) to the venom of sea kraits (Laticauda colubrina): a test of coevolution”. Toxicon36 (4): 619–625. doi:10.1016/S0041-0101(97)00081-0. PMID9643474.
^Zimmerman, K. D.; Heatwole, Harold; Davies, H. I. (1992-03-01). “Survival times and resistance to sea snake (Aipysurus laevis) venom by five species of prey fish”. Toxicon30 (3): 259–264. doi:10.1016/0041-0101(92)90868-6. ISSN0041-0101. PMID1529461.
^Mebs, Dietrich (2009-12-15). “Chemical biology of the mutualistic relationships of sea anemones with fish and crustaceans”. Toxicon. Cnidarian Toxins and Venoms 54 (8): 1071–1074. doi:10.1016/j.toxicon.2009.02.027. ISSN0041-0101. PMID19268681.
^da Silva, Karen Burke; Nedosyko, Anita (2016), Goffredo, Stefano; Dubinsky, Zvy, eds., “Sea Anemones and Anemonefish: A Match Made in Heaven”, The Cnidaria, Past, Present and Future: The world of Medusa and her sisters (Springer International Publishing): pp. 425–438, doi:10.1007/978-3-319-31305-4_27, ISBN978-3-319-31305-4
^Lubbock, R.; Smith, David Cecil (1980-02-13). “Why are clownfishes not stung by sea anemones?”. Proceedings of the Royal Society of London. Series B. Biological Sciences207 (1166): 35–61. Bibcode: 1980RSPSB.207...35L. doi:10.1098/rspb.1980.0013.