巨大基数的性質の一覧巨大基数的性質の一覧(きょだいきすうてきせいしつのいちらん)では巨大基数的性質を列記する。 →「巨大基数」も参照
巨大基数は、与えられた性質を持つ基数の存在を主張する公理の無矛盾性の強さの順序によっておおよそ線形に整列させられる。ある性質の基数κの存在は、その性質の以上に列挙されている大部分の性質の基底関数の存在を意味し、より無矛盾性の弱い基数定義に対して、Vκ は「φを満たす基数の階層が無限に存在する」ことを満たす。 以下の一覧は基本に無矛盾性の強さの順序に基数を並べたもので、同じ順序となるものは濃度の順で並べた。いくつかの基数 (強コンパクト基数など) の間では、正確な無矛盾性の強さの順序がわかっていないため、一覧は現在の最良の推測値を採る。
以下のさらに大きな巨大基数の性質は、選択公理によって否定されるが、それらの存在はツェルメロ=フレンケルの公理系のみ(すなわち、選択公理を使用せずに、ZF)では否定できない。 脚注
参考文献
外部リンク |
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia