周長周長(しゅうちょう)は単純閉曲線の始点から終点までの長さ。周囲(ペリメーター、英: perimeter) の長さのこと。英語の perimeter は周囲と周長の両方を指す。 多角形の周長は四則演算だけで計算できるが、円の周長は円周率が無理数であるため式は簡素でも小数点表記では厳密な値を表現することはできず、楕円の周長は四則演算だけでは表すことができない。 多角形の周長多角形の周長は、各辺の長さの総和に等しい。特に、一辺が a の正 n 角形の周長は na である。周長の等しい2つの正 n 角形は、互いに合同である。 円の周長→「円周」も参照
と表される。半径を r として と表される場合も多い。なお、全ての円は互いに相似であるので、周長の等しい2つの円の面積 S は等しい。S は c を用いて と表すことができる。 扇形の周長半径 r、中心角 θ(ラジアン)(0 < θ < 2π) の扇形の周長 l は次の式で表される。 楕円の周長→「楕円 § 楕円の幾何学的諸量」も参照
楕円 x2/a2 + y2/b2 = 1 の周長lは長軸と短軸の長さ (= 2a, 2b) のみで決まるが、周長は第二種完全楕円積分によって求めなければならない。以下に求め方の一例を示す。 その他の閉曲線の周長
積分記号一般に閉曲線の周長を求めるのに などの記号を用いて積分を行う。 関連項目 |
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia