レムニスケート周率レムニスケート周率(レムニスケートしゅうりつ、英: lemniscate constant)とは、円周率の、ベルヌーイのレムニスケートにおける対応物である。レムニスケートを研究する過程で「発見」され、特にカール・フリードリヒ・ガウスが深く研究したとされる。 数学的な記述通常は、ギリシャ文字のパイの小文字 π の異字体 ϖ(オメガの小文字 (ω) の上に横棒を1本つけたような形)で表され、実際の数値は、
(小数点以下30桁まで)である。なお、長さのパラメータ単位を1としたとき、レムニスケートの周長は、(円の周長が、円周率の倍の値であるのと同様に)レムニスケート周率の倍の値となる。 レムニスケート周率は、第一種完全楕円積分で表され、無理数でもあり、超越数でもある。 すなわち、次の式により求めることができる。 ただし、ここで r は、レムニスケートの極座標表示 の r である。 なお、これと対比して、円周率 π は、次の式で求めることができる。 また、円周率に関するビエトの式: に倣って、次式のような表現も可能である[1]:
脚注
外部リンク
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia