ルベーグ被覆次元数学の一分野、位相空間論におけるルベーグ被覆次元(ひふくじげん、英: Lebesgue covering dimension)あるいは位相次元(いそうじげん、英: topological dimension)は、位相空間に対して位相不変量となる次元の概念の(いくつかの同値でないものの)うちの一種である。 定義位相空間 X の被覆次元は、 という条件を満足する n の最小値として定義される。そのような n が存在しないときは、その空間の被覆次元は無限であるという。 例n-次元 ユークリッド空間 En の被覆次元は n である。 位相空間が被覆次元に関して 0-次元となるのは、その空間の任意の開被覆が互いに素な開集合から成る細分を持つ場合に限る。故に、そのような空間の各点は、そのような細分の開集合のうち、ちょうど一つのみに属する。 単位円の開被覆が任意に与えられたとき、開弧の族からなる細分が取れる。そのような任意の被覆は、さらに細分していけば円の各点 x が「高々」二つの開弧に属すようにすることができるから、定義により、円は次元 1 を持つ。つまり、どんな弧の族から始めたとしても、そのうちのいくつかは捨てたり縮めたりして、残りがまだ円を、ただし一重に、被覆するようにすることができる。 同様に、二次元平面における単位円板の任意の開被覆を細分して、円板の各点が三つ以上の開集合に属さないようにすることができる(二つでは一般には十分ではない)。故に円板の被覆次元は 2 となる。 性質
歴史ルベーグの先行する結果に基づき、被覆次元の厳密な定義を初めて与えたのはチェックである。 関連項目参考文献歴史的な文献
現代的な文献
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia