フールマン三角形フールマン三角形(フールマンさんかくけい、英: Fuhrmann triangle)は、ヴィルヘルム・フールマン (1833–1904)にちなんで名付けられた特別な三角形である[1]。 △ABCについて、その外接円の、それぞれA,B,Cを含まない円弧BC,CA,ABの中点をそれぞれMa,Mb,Mcとする。これらの点を三角形の辺BC,CA,ABで鏡映した点M'a,M'b,M'cが作る三角形をフールマン三角形という[2]。 フールマン三角形の外接円は、フールマン円と呼ばれる。フールマン三角形は弧の中点が成す三角形と逆向きに相似、つまり△MaMbMc~△M'aM'bM'c である[2]。フールマン三角形の面積について、以下の式が成り立つ 。 ここで、 Oは外心、Rは外接円の半径、Iは内心、sは半周長、rは内接円の半径である。右辺はオイラーの定理による変形である。フールマン三角形の辺については以下の式が成り立つ[3]。 ここで、a,b,cは各辺の長さである。 フールマン三角形と、基準三角形の対応は以下のとおりである[3]。
一般化△ABCと点Pについて、Pの擬調和三角形を△MaMbMc、BC,CA,ABでMa,Mb,Mcを鏡映した点をM'a,M'b,M'cとする。△M'aM'bM'cをPフールマン三角形(P-Fuhrmann triangle)という[5]。Pの擬調和三角形とフールマン三角形は逆向きに相似である[6]。Pフールマン三角形の外接円はPフールマン円、またはPヘギー円と呼ばれる。Pが内心のときは単にフールマン三角形、フールマン円である。 出典
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia