フォークマングラフ
数学のグラフ理論の分野におけるフォークマングラフ(英: Folkman graph)とは、ジョン・フォークマンの名にちなむグラフであり、20個の頂点と40個の辺を持ち、4-正則な2部グラフである[1]。 フォークマングラフはハミルトンであり、彩色数は 2、彩色指数は 4、半径は 3、直径は 4、内周は 4 である。4-頂点連結かつ 4-辺連結なパーフェクトグラフでもある。 代数的性質フォークマングラフの自己同型群は、その辺上では推移的に作用するが、頂点上ではそのように作用しない。フォークマングラフは、辺推移的かつ正則な最小の無向グラフであるが、頂点推移的ではない[2]。そのようなグラフは半対称グラフと呼ばれ、1967 年にこのグラフを発見したフォークマンによって初めて研究された[3]。 半対称グラフとしてのフォークマングラフは2部グラフであり、その自己同型群は各二つの頂点からなる bipartition の集合上で推移的に作用する。フォークマングラフの彩色数を示している下の図においては、緑の頂点が赤の頂点へと写される自己同型は存在しないが、どのような赤の頂点も他の赤の頂点へと写すことができ、また、どのような緑の頂点も他の緑の頂点へと写すことが出来る。 フォークマングラフの特性多項式は である。 ギャラリー参考文献
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia