^ abcGantt, E., Edwards, M. R. & Conti, S. F. (1968). “Ultrastructure of Porphyridium aerugineum. A blue-green colored Rhodophytan”. Journal of Phycology4: 65–71. doi:10.1111/j.1529-8817.1968.tb04678.x.
^ abScott, J. (1986). “Ultrastructure of cell division in the unicellular red alga Flintiella sanguinaria”. Canadian Journal of Botany64: 516-524. doi:10.1139/b86-066.
^ abcdScott, J. L., Baca, B., Ott, F. D. & West, J. A. (2006). “Light and electron microscopic observations on Erythrolobus coxiae gen. et sp. nov.(Porphyridiophyceae, Rhodophyta) from Texas USA”. Algae21: 407-416. doi:10.4490/algae.2006.21.4.407.
^ abcdefghYang, E. C., Scott, J., West, J. A., Orlova, E., Gauthier, D., Küpper, F. C., ... & Karsten, U. (2010). “New taxa of the Porphyridiophyceae (Rhodophyta): Timspurckia oligopyrenoides gen. et sp. nov. and Erythrolobus madagascarensis sp. nov.”. Phycologia49: 604-616. doi:10.2216/09-105.1.
^ abcYang, E. C., Scot, J., West, J. A., Yoon, H. S., Yokoyama, A., Karsten, U., ... & Orlova, E. (2011). “Erythrolobus australicus sp. nov. (Porphyridiophyceae, Rhodophyta): a description based on several approaches”. Algae26: 167-180. doi:10.4490/algae.2011.26.2.167.
^Arad, S. M., Adda, M. & Cohen, E. (1985). “The potential of production of sulfated polysaccharides from Porphyridium”. Plant and Soil89: 117-127. doi:10.1007/BF02182238.
^Gunatilaka, A. (1975). “Some aspects of the biology and sedimentology of laminated algal mats from Mannar Lagoon, northwest Ceylon”. Sedimentary Geology14: 275-300. doi:10.1016/0037-0738(75)90003-2.
^ ab原 慶明 (1993). “Porphyridium purpureum”. In 堀 輝三 (編). 藻類の生活史集成. 褐藻・紅藻類. 内田老鶴圃. pp. 182–183. ISBN978-4753640584
^Takaichi, S., Yokoyama, A., Mochimaru, M., Uchida, H. & Murakami, A. (2016). “Carotenogenesis diversification in phylogenetic lineages of Rhodophyta”. Journal of Phycology52: 329-338. doi:10.1111/jpy.12411.
^Shimonaga T, Fujiwara S, Kaneko M, Izumo A, Nihei S, Francisco PBJr, Satoh A, Fujita N, Nakamura Y & Tsuzuki M. (2007). “Variation in storage α-polyglucans of red algae: amylose- and amylopectin-types in Porphyridium and glycogen-type in Cyanidium”. Mar. Biotechnol.'9: 192-202. doi:10.1007/s10126-006-6104-7.
^Shimonaga, T., Konishi, M., Oyama, Y., Fujiwara, S., Satoh, A., Fujita, N., Colleoni, C., Buléon, A., Putaux, J., Ball, S.G., Yokoyama, A., Hara, Y., Nakamura, Y. & Tsuzuki, M. (2008). “Variation in storage α-glucans of the Porphyridiales (Rhodophyta)”. Plant and Cell Physiology49: 103-116. doi:10.1093/pcp/pcm172.
^Eggert, A. & Karsten, U. (2010). “Low molecular weight carbohydrates in red algae - an ecophysiological and biochemical perspective”. Red Algae in the Genomic Age. Springer Netherlands. pp. 443-456. ISBN978-90-481-3794-7.
^Pickett-Heaps, J. D., West, J. A., Wilson, S. M. & McBride, D. L. (2001). “Time-lapse videomicroscopy of cell (spore) movement in red algae”. European Journal of Phycology36: 9-22. doi:10.1017/S0967026201002992.
^York, P. V. & Johnson, L. R. (2002). The Freshwater Algal Flora of the British Isles: An Identification Guide to Freshwater and Terrestrial Algae. Cambridge University Press. pp. 702. ISBN0-521-77051-3
^Sheath, R.G. (2003). “Red Algae”. In Wehr, J.D. & Sheath, R.G. (eds.). Freshwater Algae of North America. Ecology and Classification. Elsevier Science USA, San Diego. pp. 197-224. ISBN0127415505
^Lee, J. J. (1990). “Fine structure of the rhodophycean Porphyridium purpureum in situ in Peneroplis pertusus (Forskal) and P. acicularis (Batsch) and in axenic culture”. The Journal of Foraminiferal Research20: 162-169. doi:10.2113/gsjfr.20.2.162.
^Yoon, H.S., Muller, K.M., Sheath, R.G., Ott, F.D. & Bhattacharya, D. (2006). “Defining the major lineages of red algae (Rhodophyta)”. J. Phycol.42: 482-492. doi:10.1111/j.1529-8817.2006.00210.x.
^Yoon, H.S., Zuccarello, G.C. & Bhattacharya, D. (2010). “Evolutionary history and taxonomy of red algae”. In Seckbach, J. & Chapman, D.J.. Red Algae in the Genomic Age. Springer, Netherlands. pp. 25-42. ISBN978-90-481-3794-7
^Müller, K.M., Lynch, M.D., & Sheath, R.G. (2010). “Bangiophytes: from one class to six; where do we go from here?”. In Seckbach, J. & Chapman, D.J.. Red Algae in the Genomic Age. Springer, Netherlands. pp. 241-259. ISBN978-90-481-3794-7
^Muñoz-Gómez, S. A., Mejía-Franco, F. G., Durnin, K., Colp, M., Grisdale, C. J., Archibald, J. M. & Slamovits, C. H. (2017). “The new red algal subphylum Proteorhodophytina comprises the largest and most divergent plastid genomes known”. Current Biology27: 1677-1684. doi:10.1016/j.cub.2017.04.054.
^Qiu, H., Yoon, H. S. & Bhattacharya, D. (2016). “Red algal phylogenomics provides a robust framework for inferring evolution of key metabolic pathways”. PLoS Currents8. doi:10.1371/currents.tol.7b037376e6d84a1be34af756a4d90846.
^ abKamiya, M., Lindstrom, S. C., Nakayama, T., Yokoyama, A., Lin, S. M., Guiry, M. D., ... & Cho, T. O. (2017). Syllabus of plant families ‐ A. Engler's Syllabus der Pflanzenfamilien Part 2/2: Photoautotrophic eukaryotic algae ‐ Rhodophyta. Borntraeger Science Publishers, Berlin. pp. 171. ISBN978-3-443-01094-2