X を円( 1次元多様体の例)とする。オーダー n のヤコビ図(Jacobi diagram) G とは、右の図の例のような 2n 個の頂点を持ち、部分グラフとして円(external circle)をひとつ持ち、それ以外の円の内部にもグラフ(inner graph)を持ち、次の条件を満たすグラフのことをいう。
通常のタングルとは異なり、隣り合う端点との距離が等しいことを仮定しないことに注意すべきである(これにより、ここで扱うようなタングルを非結合的タングル、準タングルと呼ぶこともある)。準タングルはモノイド圏を成すが、モノイド積に関して (a ⊗ b)⊗ c = a ⊗ (b ⊗ c) は成立しない。Φ はこの両辺の間の同型を与え、五角関係式(モノイド圏のコヒーレンス条件)をみたす。Φ(またはリー代数由来のウェイトシステムによる像)をドリンフェルト・アソシエータ と呼ぶこともある。上記の U や Φ は無限級数であり、一般の結び目に対する Z の値を求めることは低次の項を除いて非常に難しい。
結び目に対するコンツェビッチ不変量の値は群的である。即ち、余積をΔで表すと Δ(Z ( K )) =Z ( K ) ⊗ Z ( K ) を満たす。これにより、ある の元 z( K ) が存在して Z ( K ) = exp (z (K )) と書ける。z ( K ) に現れるヤコビ図はすべて、幾つかの連結なループと に接続するための「足」からなるので、z ( K ) のことをループ展開と呼ぶ。
結び目の完全不変量だと予想されている。
有限型不変量に対する普遍性
次数 m の有限型不変量 v から m 次のヤコビ図に対するウェイトシステム Wv を構成することができ、一方ウェイトシステム W に対して、 W·Z の m 次の係数は m 次の有限型不変量である。コンツェビッチ不変量は m 次の有限型不変量の空間と m 次のヤコビ図に対するウェイトシステムの空間の間の同型対応を与える(実際には商空間の間の同型となる。)。
コンツェビッチ不変量はまずコンツェビッチによって反復積分の形で定義された。しかしその定義から、結び目を水平線で幾つかの部分に分割し、部分ごとに不変量の値を求めてもよいことが容易にわかる。実際、レ(Le) と村上順[4]は、結び目の生成系であるタングルを準タングルに拡張し、生成元ごとにコンツェビッチ不変量の値を計算することで組み合わせ的な定義を得た。同時に彼らは紐のねじれ(framing)に対応するコンツェビッチ不変量の値も定式化し、三次元多様体に対する普遍量子不変量への道を開いた(技術的な要請から、反復積分による定義ではヤコビ図(正確にはコード図)に FI 関係式が必要で、紐のねじれの情報は値に反映されなかった)。
^D. Bar-Natan, On the Vassiliev knot invariants,Topology 34 (1995) 423-472.
^T. T. Q. Le and J. Murakami, The universal Vassiliev-Kontsevich invariant for framed oriented links, Compo. Math. 102 (1996), 42-64.
^D. Bar-Natan, S. Garoufalidis, L. Rozansky and D. P. Thurston, Wheels, Wheeling, and the Kontsevich Integral of the Unknot, Israel Journal of Mathematics 119 (2000) 217-237.