^Alberts, Bruce (2008). Molecular Biology of the Cell (5th ed.). New York: Garland Science
^“Bacterial pore-forming toxins: the (w)hole story?”. Cellular and Molecular Life Sciences65 (3): 493–507. (February 2008). doi:10.1007/s00018-007-7434-y. PMID17989920.
^“Phosphorylation, ubiquitination and degradation of listeriolysin O in mammalian cells: role of the PEST-like sequence”. Cellular Microbiology8 (2): 353–64. (February 2006). doi:10.1111/j.1462-5822.2005.00631.x. PMID16441444.
^ ab“Structural insights into the membrane-anchoring mechanism of a cholesterol-dependent cytolysin”. Nature Structural Biology9 (11): 823–7. (November 2002). doi:10.1038/nsb855. PMID12368903.
^“Structure of a cholesterol-binding, thiol-activated cytolysin and a model of its membrane form”. Cell89 (5): 685–92. (May 1997). doi:10.1016/s0092-8674(00)80251-2. PMID9182756.
^“The mechanism of pore assembly for a cholesterol-dependent cytolysin: formation of a large prepore complex precedes the insertion of the transmembrane beta-hairpins”. Biochemistry39 (33): 10284–93. (August 2000). doi:10.1021/bi000436r. PMID10956018.
^“Prepore to pore transition of a cholesterol-dependent cytolysin visualized by electron microscopy”. Journal of Structural Biology150 (1): 100–8. (April 2005). doi:10.1016/j.jsb.2005.02.003. PMID15797734.
^“Identification of a membrane-spanning domain of the thiol-activated pore-forming toxin Clostridium perfringens perfringolysin O: an alpha-helical to beta-sheet transition identified by fluorescence spectroscopy”. Biochemistry37 (41): 14563–74. (October 1998). doi:10.1021/bi981452f. PMID9772185.
^“Arresting pore formation of a cholesterol-dependent cytolysin by disulfide trapping synchronizes the insertion of the transmembrane beta-sheet from a prepore intermediate”. The Journal of Biological Chemistry276 (11): 8261–8. (March 2001). doi:10.1074/jbc.m009865200. PMID11102453.
^“The mechanism of membrane insertion for a cholesterol-dependent cytolysin: a novel paradigm for pore-forming toxins”. Cell99 (3): 293–9. (October 1999). doi:10.1016/s0092-8674(00)81660-8. PMID10555145.
^“Monomer-monomer interactions drive the prepore to pore conversion of a beta-barrel-forming cholesterol-dependent cytolysin”. The Journal of Biological Chemistry277 (13): 11597–605. (March 2002). doi:10.1074/jbc.m111039200. PMID11799121.
^Alouf, J. E., Billington, S. J. & Jost, B. H. (2006) Repertoire and general features of the family of cholesterol-dependent cytolysins. In Alouf, J. E. & Popoff, M. R. (Eds.) The Comprehensive Sourcebook of Bacterial Protein Toxins. 3rd ed., pp. 643-658, Oxford, England. Academic Press
^“How interaction of perfringolysin O with membranes is controlled by sterol structure, lipid structure, and physiological low pH: insights into the origin of perfringolysin O-lipid raft interaction”. The Journal of Biological Chemistry283 (8): 4632–42. (February 2008). doi:10.1074/jbc.m709483200. PMID18089559.
^ ab“Effect of lipidic factors on membrane cholesterol topology--mode of binding of theta-toxin to cholesterol in liposomes”. Biochimica et Biophysica Acta1109 (1): 81–90. (August 1992). doi:10.1016/0005-2736(92)90190-W. PMID1504083.
^“Influence of increased membrane cholesterol on membrane fluidity and cell function in human red blood cells”. Journal of Supramolecular Structure8 (4): 413–30. (1978-01-01). doi:10.1002/jss.400080404. PMID723275.
^“Conformational changes that effect oligomerization and initiate pore formation are triggered throughout perfringolysin O upon binding to cholesterol”. The Journal of Biological Chemistry282 (31): 22629–37. (August 2007). doi:10.1074/jbc.M703207200. PMID17553799.
^“The cholesterol-dependent cytolysin signature motif: a critical element in the allosteric pathway that couples membrane binding to pore assembly”. PLoS Pathogens8 (7): e1002787. (2012). doi:10.1371/journal.ppat.1002787. PMID22792065.
^“Differential interaction of the two cholesterol-dependent, membrane-damaging toxins, streptolysin O and Vibrio cholerae cytolysin, with enantiomeric cholesterol”. FEBS Letters553 (3): 229–31. (October 2003). doi:10.1016/S0014-5793(03)01023-8. PMID14572629.
^“Differential function of Listeria monocytogenes listeriolysin O and phospholipases C in vacuolar dissolution following cell-to-cell spread”. Cellular Microbiology9 (1): 179–95. (January 2007). doi:10.1111/j.1462-5822.2006.00780.x. PMID17222191.