Si può considerare la trasformata di Hadamard come costruita da trasformate discrete di Fourier (DFT) di dimensione 2, ed è di fatto equivalente a una DFT multidimensionale di dimensione 2 × 2 × ⋯ × 2 × 2.[2] Scompone un vettore di input arbitrario in una sovrapposizione di funzioni di Walsh.
La trasformata di Hadamard Hm è una matrice 2m × 2m, la matrice di Hadamard (riscalata con un fattore di normalizzazione), che trasforma 2m numeri reali xn in 2m numeri reali Xk. La trasformata di Hadamard può essere definita in due modi: ricorsivamente, o usando la rappresentazione binaria (base 2) degli indici n e k.
Ricorsivamente, si può definire la trasformata di Hadamard 1 × 1 l'identità: H0 = 1, e poi definire Hm per m > 0 come:
dove 1/√2 è un fattore di normalizzazione a volte omesso.
Per m > 1, si può definire Hm come:
dove rappresenta il prodotto di Kronecker. Pertanto, a parte il fattore di normalizzazione, le matrici di Hadamard sono fatte interamente di 1 e −1.
Equivalentemente, è possibile definire la matrice di Hadamard con l'entrata (k, n)-esima scrivendo
Applicazioni in computazione quantistica
In informatica quantistica la trasformazione di Hadamard, spesso chiamata porta di Hadamard in questo contesto (cfr. porta quantistica), è una rotazione di un qubit, che mappa gli stati di base e a una sovrapposizione dei due stati con peso uguale. Solitamente le fasi sono scelte in modo tale che
nella base , detta anche base computazionale. Gli stati e sono conosciuti anche rispettivamente come e , e insieme costituiscono la base polare.
Molti algoritmi quantistici usano la trasformata di Hadamard come passo iniziale, siccome mappa m qubit inizializzati con a una sovrapposizione di tutti i 2m stati ortogonali nella base con peso uguale.
Operazioni della porta di Hadamard
Un'applicazione della porta di Hadamard a un qubit 0 o 1 qubit produrrà uno stato quantistico che, se osservato, sarà 0 o 1 con uguale probabilità. Questo è esattamente come tirare una moneta equa nel modello standard probabilistico della computazione. Tuttavia, se la porta di Hadamard viene applicata due volte in sequenza (come nelle ultime due operazioni sopra), allora lo stato finale sarà sempre lo stato di partenza.
Note
^Compare Figure 1 in W. J. Townsend e M. A. Thornton, Walsh Spectrum Computations Using Cayley Graphs.