Lo scudo glicano o glicoproteoma virale (in ingleseViral glycoproteomes) è uno dei meccanismi biochimici che permettono ai virus di evadere le risposte immunitarie dell'ospite infettato.[2] Ciò grazie al mascheramento delle proteine di superficie degli stessi, grazie ai glicani che sono zuccheri di superficie.
Questo scudo è un possibile target molecolare per l'azione di nuovi vaccini e delle terapie immunitarie.[3]
Un passaggio iniziale critico dell'ingresso virale è il riconoscimento e il legame ai glicani ospiti presenti sulle superfici cellulari, infatti il legame del glicano determina la specificità dell'interazione antigene-anticorpo, il tropismo tissutale, la patogenesi e il potenziale di trasmissione interspecie.[4] Inoltre, le glicoproteine virali (glicani) svolgono un ruolo essenziale durante il ciclo di replicazione del virus.[5]
L'evasione immunitaria da parte dei virus è legata alla formazione delle nuove particelle virali che si "rivestono" di una membrana ad involucro che è derivata dalla cellula ospite, modificata con glicoproteine codificate virus spesso fortemente glicosilate, glicoproteine che sono importanti per determinare l'infettività del virus.[6]
Un nuovo obiettivo farmacologico della terapia immunologica antivirale è legato al fatto che il virus dell'HIV, ma non solo, presenti dei "fori" liberi dalla presenza dei glicani che permetterebbero agli anticorpi di arrivare alla struttura proteica del peplomero virale.[9]
Esiste uno scudo glicano che è utilizzato dalla proteina CD4 dello scimpanzé, scudo che è capace di proteggere riducendo l'affinità di legame con la glicoproteina di superficie del peplomero (Env) lentivirale.[10]
Lo scudo glicano è stato studiato come possibile target di farmaci o vaccini antivirali, le ricerche più recenti indicano che il legame della lecitina è stata riconosciuta essere capace di inibire l'entrata del virus nella cellula ospite perché essa si legherebbe ai glicani virali.[11]
Scudo glicano: punti salienti
In gruppo multinazionale di ricercatori individua 4 punti salienti per descrivere in virologia l'importanza dello scudo glicano ai fini della evasione virale, e non solo, da parte di molti virus:[7]
I virus avvolti spesso dirottano le vie di glicosilazione della cellula ospite.
I glicani virali hanno molteplici influenze sulla patobiologia.
I glicani hanno funzionalità intrinseche, ma possono anche essere influenzati dalla selezione immunitaria.
La glicobiologia virale sta emergendo come parametro importante per la progettazione dei vaccini.
Scudo glicano e SARS-CoV-2
Il SARS-CoV-2 possiede un totale di 22 siti glicanici con il dominio N-terminale rispetto ai 23 presenti nella SARS, con 18 di questi siti in comune. È probabile che questi proteggano il nuovo coronavirus mascherando alcuni epitopi immunogenici presenti nel virus della SARS; entrambi presenti sulla proteina spike S1.[12]
Scudo glicano e HIV
Un meccanismo di evsione del virus dell'HIV è quello che una volta entrato nella cellula ospite è in grado di evadere gli anticorpi neutralizzanti, grazie alla proteina Tat dell'HIV che si lega alla proteina virale Env generando un complesso di entrata; e ciò potrebbe contribuire al mantenimento dei serbatoi di virus latente inattaccabili dalla terapia.[13]
La fitta schiera di glicani legati al dominio N-terminale sulla glicoproteina dell'involucro dell'HIV-1 (Env), nota come "scudo glicano", è un determinante chiave dell'immunogenicità, ma l'eterogeneità intrinseca confonde la tipica analisi struttura-funzione.[14]
Inoltre, «la deglicosilazione enzimatica di Env in un modo non risolta nel tempo, abbiamo scoperto che i cluster di glicani altamente connessi sono resistenti alla digestione e aiutano a stabilizzare il trimero di prefusione, suggerendo che lo scudo glicano può funzionare oltre l'evasione immunitaria».[14]
Virus a evasione forte
I virus classificati come "virus a evasione forte" possono quindi differire a causa della varia efficacia della schermatura superficiale delle proteine da parte dei glicani. L'evasione immunitaria è correlata a principi strutturali che governano lo stato di glicosilazione delle glicoproteine trimeriche.[12]
^ab Zachary T. Berndsen, Srirupa Chakraborty, Xiaoning Wang, Christopher A. Cottrell, Jonathan L. Torres, Jolene K. Diedrich, Cesar A. López, John R. Yates, Marit J. van Gils, James C. Paulson, Sandrasegaram Gnanakaran e Andrew B. Ward, Visualization of the HIV-1 Env glycan shield across scales, in Proceedings of the National Academy of Sciences, vol. 117, n. 45, Proceedings of the National Academy of Sciences, 22 ottobre 2020, pp. 28014-28025, DOI:10.1073/pnas.2000260117, ISSN 0027-8424 (WC · ACNP).
NP Farrell, AK Gorle, EJ Peterson e SJ Berners-Price, 10. GALLIUM COMPLEXES AS ANTICANCER DRUGS, in Metallo-Drugs: Development and Action of Anticancer Agents, Metal ions in life sciences, vol. 18, De Gruyter, 5 febbraio 2018, DOI:10.1515/9783110470734-010, ISBN978-3-11-047073-4, PMID29394023.