Modello logit

Il modello logit è rappresentato in blu.

In statistica, il modello logit, noto anche come modello logistico o regressione logistica, è un modello di regressione nonlineare utilizzato quando la variabile dipendente è di tipo dicotomico. L'obiettivo del modello è di stabilire la probabilità con cui un'osservazione può generare uno o l'altro valore della variabile dipendente; può inoltre essere utilizzato per classificare le osservazioni, in base alla caratteristiche di queste, in due categorie.[1]

Il modello logit fa parte della classe dei modelli lineari generalizzati, così come il modello probit ed il modello loglineare, dai quali differisce essenzialmente per la scelta della funzione .[1]

Scelta della funzione

La funzione logit. L'inversa di questa funzione è utilizzata nella regressione logistica.

Un modello di regressione dove la variabile dipendente è dicotomica, ossia una variabile che può avere come unici valori 0 e 1 o riconducibili ad essi, calcola la probabilità che questa variabile acquisisca valore 1. Poiché le probabilità per definizione sono limitate ad un intervallo , l'utilizzo di un modello di regressione lineare non sarebbe appropriato, infatti esso restituirebbe dei valori appartenenti all'intero insieme .[2] Si supponga infatti il seguente modello lineare:

La derivata

essendo costante e uguale al parametro , non permette alla funzione di cambiare pendenza in base al valore di e quindi di poter avere come codominio . Questa caratteristica è invece posseduta, ad esempio, dalle funzioni di ripartizione.[2] L'utilizzo infatti di una funzione non lineare permette di avere una derivata prima dipendente da e quindi in grado di cambiare al variare di questa variabile. Se si considera infatti il seguente modello:

dove la derivata è la seguente

Si nota come la pendenza della curva ora possa variare al variare di , potendo quindi possedere un codominio . Per il modello logit si utilizza come funzione la funzione di ripartizione della distribuzione logistica standard.[1]

Definizione

Il modello di regressione logit per la popolazione è:[1][3]

dove:

  • indica la probabilità;
  • è la variabile dipendente dicotomica con una distribuzione bernoulliana ;
  • è il vettore di variabili indipendenti o regressori ;
  • è il vettore di parametri ;
  • è la funzione di ripartizione della distribuzione logistica standard;
  • è il numero di Eulero, circa uguale a .

Varianza

La varianza della variabile dipendente risulta dipendere dal vettore dei regressori . Infatti

Effetto marginale

L'effetto sulla variabile dipendente dato da un cambiamento in un regressore , chiamato effetto marginale, è calcolato come la derivata del valore atteso di rispetto a :

dove è il parametro associato al regressore .[1] Per il calcolo della derivata il regressore deve essere continuo.

Illustrazione del metodo

Per ogni osservazione campionaria si dispone di una determinazione e di determinazioni . Il modello cerca una relazione non lineare, utilizzando la funzione di ripartizione della distribuzione logistica standard, tra la variabile dipendente e variabili indipendenti, stimando il valore dei coefficienti tramite il metodo della massima verosimiglianza.[1]

Stima del modello

Il vettore di parametri è di norma stimato con il metodo della massima verosimiglianza, con il quale si ottengono stimatori efficienti, consistenti e distribuiti normalmente nel caso in cui il campione statistico sia abbastanza grande.[4] Queste proprietà permettono di calcolare il test t su un parametro, il test F nel caso di restrizioni multiple e gli intervalli di confidenza.[4] Alla stima dei parametri segue la stima della probabilità .

Funzione di verosimiglianza

Nel modello logit la variabile dipendente è dicotomica e con distribuzione . Si consideri un campione di osservazioni dove ciascuna di esse è identificata con . Per la definizione del modello, la probabilità che questa variabile sia 1 per una data osservazione è

mentre la probabilità che sia 0 è

La distribuzione di probabilità condizionata per ogni elemento può essere scritta come

Si considera ora l'intero campione e sia assume che siano indipendenti e identicamente distribuite per ogni osservazione . Risulta quindi che la distribuzione di probabilità congiunta di è il prodotto delle probabilità condizionate di ogni osservazione:

Si riprende ora la definizione del modello logit e la si sostituisce al posto di , ottenendo quindi la funzione di verosimiglianza[5]

Stima dei parametri

Per calcolare gli stimatori dei parametri risulta conveniente calcolare la funzione di log-verosimiglianza poiché in questo modo si riesce a eliminare la produttoria. Si applica quindi il logaritmo alla funzione di verosimiglianza:

Gli stimatori calcolati con il metodo della massima verosimiglianza massimizzano la funzione precedente risolvendo il seguente problema:

[6]

Per semplificare la scrittura consideriamo un vettore dei parametri , la derivata di , ossia la funzione di densità di probabilità della distribuzione logistica, e il numero di osservazioni nel campione. Le condizioni per la massimizzazione sono due: quella di primo ordine dove la derivata prima rispetto ai parametri deve essere posta uguale a zero per trovare i punti estremanti, la seconda invece pone la derivata seconda, sempre rispetto ai parametri, minore di zero per determinare le concavità della funzione e quindi garantire che quelli trovati siano solo punti di massimo:

Solitamente le soluzioni di queste condizioni non sono semplici da determinare oppure non possono essere trovate affatto, ma per ovviare a questo problema si possono utilizzare dei programmi statistici per computer che, attraverso alcuni algoritmi, trovano delle loro approssimazioni.[6]

Stima della probabilità

Quando è stato calcolato il vettore , ossia la stima del vettore dei parametri , è possibile procedere alla stima della probabilità . Per definizione del modello, questa probabilità è anche il valore atteso di .

Note

  1. ^ a b c d e f (EN) James H. Stock e Mark W. Watson, Regression with a Binary Dependent Variable, in Introduction to Econometrics, 3ª ed., Pearson, 2015, pp. 442-443, ISBN 978-1-292-07131-2.
  2. ^ a b (EN) James H. Stock e Mark W. Watson, Regression with a Binary Dependent Variable, in Introduction to Econometrics, 3ª ed., Pearson, 2015, p. 437, ISBN 978-1-292-07131-2.
  3. ^ Il valore attes
  4. ^ a b (EN) James H. Stock e Mark W. Watson, Regression with a Binary Dependent Variable, in Introduction to Econometrics, 3ª ed., Pearson, 2015, pp. 441-442, ISBN 978-1-292-07131-2.
  5. ^ L'intera derivazione della funzione di verosimiglianza è consultabile alle pagine qui riportate. (EN) James H. Stock e Mark W. Watson, Regression with a Binary Dependent Variable, in Introduction to Econometrics, 3ª ed., Pearson, 2015, pp. 465-466, ISBN 978-1-292-07131-2.
  6. ^ a b (EN) James H. Stock e Mark W. Watson, Regression with a Binary Dependent Variable, in Introduction to Econometrics, 3ª ed., Pearson, 2015, pp. 465-466, ISBN 978-1-292-07131-2.

Bibliografia

Voci correlate

Altri progetti

Controllo di autoritàLCCN (ENsh85078131 · GND (DE4230396-5 · BNF (FRcb13737339z (data) · J9U (ENHE987007536257205171

 

Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9

Portal di Ensiklopedia Dunia