IsomorfismoIn matematica, in particolare in algebra astratta, un isomorfismo (dal greco ἴσος, isos, che significa uguale, e μορφή, morphé, che significa forma) è un'applicazione biunivoca fra oggetti matematici tale che l'applicazione e la sua inversa siano omomorfismi. Intuitivamente, un isomorfismo può essere definito con le parole del matematico Douglas Hofstadter: «Si parla di isomorfismo quando due strutture complesse si possono applicare l'una sull'altra, cioè far corrispondere l'una all'altra, in modo tale che per ogni parte di una delle strutture ci sia una parte corrispondente nell'altra struttura; in questo contesto diciamo che due parti sono corrispondenti se hanno un ruolo simile nelle rispettive strutture.» DefinizioneSi definisce isomorfismo un'applicazione biiettiva f tra due insiemi dotati di strutture della stessa specie tale che sia f sia la sua inversa f −1 siano omomorfismi, cioè applicazioni che preservano le caratteristiche strutture. Più in generale, nella teoria delle categorie un isomorfismo è un morfismo in una categoria per la quale esista un inverso tale che: e Questa nozione ha portata molto vasta in quanto si possono prendere in considerazione molte specie di strutture e moltissime strutture specifiche. Si possono inoltre considerare isomorfismi tra oggetti non costruiti su un insieme di sostegno, ad esempio su due processi. Se esiste un isomorfismo fra due strutture, le strutture si dicono isomorfe. Due strutture isomorfe si possono considerare essenzialmente uguali. Ignorando cioè le identità specifiche degli elementi degli insiemi sottostanti a esse e focalizzandosi solo su aspetti rilevanti delle strutture stesse, le due strutture si possono identificare. Per ogni struttura assegnata a un insieme, inoltre, esiste una definizione formale "naturale" di isomorfismo. Insiemi ordinatiSe un oggetto consiste in un insieme X con un ordinamento ≤ e un altro oggetto consiste in un insieme Y con un ordinamento , allora un isomorfismo da X a Y è una funzione biiettiva f : X → Y tale che
Tale isomorfismo è detto isomorfismo d'ordine o isotonia. Operazioni binarieSe su due insiemi X e Y sono definite le operazioni binarie arbitrarie e rispettivamente, allora un isomorfismo da X a Y è una funzione biiettiva f : X → Y tale che per ogni u, v in X. Quando gli oggetti in questione sono gruppi, tale isomorfismo è detto isomorfismo tra gruppi. Analogamente, se gli oggetti sono campi, quindi dotati ciascuno di due operazioni, e la funzione biiettiva si comporta come sopra per entrambe, è detto isomorfismo di campi. Nell'algebra universale si può dare una definizione generale di isomorfismo che copre questi e molti altri casi. La definizione di isomorfismo data nella teoria delle categorie è ancora più generale. GrafiNella teoria dei grafi, un isomorfismo fra due grafi G e H è un'applicazione biiettiva f dai vertici di G ai vertici di H che preserva la "struttura relazionale" nel senso che c'è un arco (o spigolo) dal vertice u al vertice v se e solo se c'è un analogo collegamento dal vertice f(u) al vertice f(v) in H. Spazi vettorialiNell'algebra lineare un isomorfismo fra due spazi vettoriali è una trasformazione biiettiva che sia anche lineare. Spazi topologiciIn topologia un isomorfismo tra spazi topologici è una mappa biiettiva che preserva le topologie (manda aperti in aperti), cioè continua nei due versi; una tale funzione si dice un omeomorfismo. EsempiDi seguito si riportano alcuni esempi di strutture isomorfe:
Voci correlateAltri progetti
Collegamenti esterni
|
Portal di Ensiklopedia Dunia