Rangsorolt párokA rangsorolt párok (néha „RP”) vagy másképp a Tideman-módszer egy Nicolaus Tideman által 1987-ben kifejlesztett választási rendszer, amely a preferenciákat kifejező szavazatok alapján választ ki egyetlen győztest.[1][2] A rangsorolt párok eljárása használható a nyertesek rendezett listájának létrehozására is. Ha van egy jelölt, akit előnyben részesítenek a többi jelölttel szemben a választók, akkor a rangsorolt páros eljárás garantálja, hogy ez a jelölt nyer. Emiatt a tulajdonság miatt a rangsorolt párok eljárása megfelel a Condorcet-kritériumnak (és így egy Condorcet-módszer).[3] EljárásA rangsorolt párok eljárása a következőképpen működik:
Megjegyzés: a számlálás során a szavazatok számainak tényleges értéke és a szavazatok százalékos aránya egyaránt használható. Ugyanaz lesz az eredmény, mivel a szavazatok aránya számít. Egy példaA választók w, x, y, z jelöltekre szavazhatnak. Egy szavazólapra lehetséges példák ebben az esetben:
Miután minden szavazó leadta a szavazatát, az egyes sorrendeket össze kell számolni, aminek az eredménye a példánkban (a > relációs jeltől balra található fél előrébb van sorolva, mint a jobbra található):
A szavazatok páronkénti eloszlásai egy mátrixban (táblázatban) foglalhatóak össze. Ebben a táblázatban a soronként mennek a jelöltek, és az egyes oszlopok azt mutatják, hogy a sorban található jelölt az oszlopokban látható jelölteket hány esetben győzte le (negatív számmal jelölve, ha veszített). Pl. az első sor második oszlopa a következőképpen számolható:
A pontszámok összege: +7+2-4+5+1+8=9. Tehát a táblázat (w, x) cellája 9 lesz. Ugyanígy végigszámolva a többi cellára a páronkénti szavazateloszlás:
Ennek a táblázatnak a főátlója értelemszerűen 0-kból áll (magukkal szemben nem győznek és nem veszítenek a jelöltek). Emellett a táblázat ferdén szimmetrikus, mivel minden győzelem a másik oldalon egy ugyanakkora veszteség, tehát elegendő csak az egyik felét kiszámolni.
Sorba rendezésA táblázat pozitív többségeit ezután csökkenő sorrendbe rendezzük:
ZárásA legerősebb győzelmet x-z páros mutatta fel, így x lesz a gráf első csúcsa, amiből az első él z-be mutat. A 2.legerősebb győzelmet a w-x páros tudhatja magáénak anélkül, hogy ellentmondásba keveredne a korábbi győzelmekkel. A következő csúcs így w lesz, amiből x-be mutat egy él. A 3. sorszámú győzelem z-t illetné meg a w-vel szemben, de ez ellentmond a korábbi két csúcsnak, amelyek alapján z-nél erősebb x és w szintén erősebb, mint x. A gráfon ez úgy mutatkozik, hogy x, w és z ebben a lépésben egy ciklust alkotna (hasonlóan egy kő-papír-olló helyzethez). ezért ezt az élet figyelmen kívül hagyjuk. A 4. sorszámú győzelem alapján x-ből kell y-ba húzni a gráfon egy élet. Ez nem mond ellent a korábbi, erősebb győzelmeknek, nem zár be ciklust, tehát ez az él érvényes. Az 5. győzelem szerint egy y-ból z-be mutató él következik, ami nem alkot újabb ciklust, így behúzható. Végül egy w-ből y-ba irányuló él következik, ami szintén érvényes. A folyamatot a következő animáció illusztrálja: ![]()
GyőztesA zárolt párok gráfjának a forrása a nyertes, jelen esetben w. Az ezt követő helyezések úgy rangsorolhatóak, hogy az egyes résztvevőkből hány él mutat el (minél több, annál feljebb kerülnek a végeredményben), illetve hány él mutat rájuk (minél több, annál lejjebb kerülnek az eredményben): A második helyezett x egy rámutató éllel, és kettő elmutató éllel. A harmadik helyezett y egy elmutató, illetve kettő rámutató éllel. Utolsó helyen z végzett, elmutató élek nélkül, két ráirányuló éllel. ![]()
Tulajdonságok
Hivatkozások
FordításEz a szócikk részben vagy egészben a Ranked pairs című angol Wikipédia-szócikk ezen változatának fordításán alapul. Az eredeti cikk szerkesztőit annak laptörténete sorolja fel. Ez a jelzés csupán a megfogalmazás eredetét és a szerzői jogokat jelzi, nem szolgál a cikkben szereplő információk forrásmegjelöléseként. További információk
|
Portal di Ensiklopedia Dunia