FotometriaA fotometria az elektromágneses spektrum 430 nm – 780 nm hullámhossz-tartományba eső sugárzásának, a látható fény méréstechnikájának és alkalmazásának a tudománya. A Nemzetközi Világítástechnikai Bizottság a láthatósági függvényt[1] 300 nm-től 830 nm-ig közli. A fényA fény a fényforrásból minden irányban egyenes vonalak mentén terjed, sugárzik. A pontnak képzelt fényforrás sugarai minden irányban széttartanak, de egyenesek maradnak, és egy tetszés szerint kiválasztott sugárnyaláb nem hagyja el azt a térbeli szöget (kúpot), amelyikben elindult.[2]
TörténeteA fénymérés az az eljárás, mellyel különböző fényforrások erejét lehet összehasonlítani.
Magyarországon három jelentős fellegvára volt az optikai méréstudománynak, Magyar Optikai Művek (1876 – 1998), Egyesült Izzólámpa és Villamossági Rt. /Tungsram/(1896-1996) és a Gamma Optikai Művek (1920), Országos Mérésügyi Hivatal (Lukács Gyula). A budapesti Műegyetem különböző tanszékein is jelentős optikai kutatások/fejlesztések történtek. A fenti gyárakban kutató-fejlesztő munka is folyt, és több neves, nemzetközileg is ismert tudós dolgozott a fénnyel kapcsolatos elméleteken, méréstechnikán és alkalmazásokon. Megemlíthetjük Rott Andor, Bródy Imre, Selényi Pál, Pfeifer Ignác, Vidor Pál, Szigeti György, dr. Urbanek János, Gábor Dénes (Nobel-díjas) neveit. Fotometria és radiometriaHa a sugárzás teljes sugárzási energiája szerint értékelő mennyiségeket vizsgáljuk, akkor radiometriai mennyiségekről beszélünk, ha azonban a CIE szabványos fénymérő észlelő[5] szerint értékelő mennyiségeket vizsgáljuk, akkor fotometriai mennyiségekről beszélünk. Más szóval ez azt jelenti, ha a fényforrások által kisugárzott fényben megjelenő energia terjedésének törvényeit vizsgáljuk, akkor azt a radiometria eszközeivel tesszük. Ha figyelembe vesszük azt, hogy az emberi szem a különböző spektrális összetételű, de azonos teljesítményű fényforrásokat másképpen érzékeli, akkor a jelenségeket a fotometria fogalmaival írjuk le.[6][7] A radiometria a teljes elektromágneses spektrum vizsgálatára és mérésére vonatkozik; a fotometria ennek csak arra a kis részére, amelyet az emberi látószerv érzékelni képes. Ezért nem tartoznak a fotometria fogalmába azok a frekvenciatartományok, amelyeket más élőlények képesek érzékelni (például a rovarok az ibolyántúli és infravörös sugárzást észlelik, az ember viszont nem). A szem és a fotometriaAz emberi szem nem egyformán érzékeny a látható fény összes hullám-hosszúságára. A fotometria megpróbálja ellensúlyozni a mért értéket a hullámhossz függvényében. A szem másképpen reagál a fényhez adaptálódott körülmények között, mint a homályos, gyenge fényviszonyok között (lásd Purkinje-jelenség). A fotometria tipikusan jó fényviszonyokhoz adaptálódott szem érzékenységén alapul. A fotometriai mérések nem pontosan jelezhetik a források fényességét gyenge fényviszonyok közt, ahol a színek nem különböztethetők meg, mint például holdfénynél vagy csillagfénynél. 3 fénysűrűség felett jó fényviszonyokról beszélünk. 0,1 cd/m2 alatt szkotpikus látásunk van (sötétben látás), fölötte mezopikus látás. Fotometriai mennyiségek és mértékegységekFényáramA fényáram (Φ) a fényerősség és a besugárzott térszög szorzata. A fényáram származtatott SI-mértékegysége neve lumen, jele lm. Ahol:
Azaz 1 lumen, az 1 candela fényerősségű, pontszerű fényforrás 1 szteradián térszögbe kisugárzott fényárama. Példák:
FényerősségA fényerősség (I) a fényforrás által egy meghatározott irányban kibocsátott fénykisugárzás mértékét jelöli. Mértékegysége kandela (cd). A fényerősség a kis térszögben kibocsátott fényáram és a térszög hányadosa. Egy kandela annak a sugárforrásnak a fényerőssége, amelyet 540×1012 Hz (λ=555 nm) frekvenciájú monokromatikus sugárzást bocsát ki és a kibocsátás irányában, egységnyi térszögben 1/683 watt sugárerősséggel sugároz. Korábban a Hefner-gyertya (HK) volt a fényerősség egysége, amelyet Friedrich von Hefner-Alteneckről (1845-1904) neveztek el. A Hefner–gyertya egy meghatározott körülmények között működő amylacetát-égő nyílt lángja. Átszámítás: Ennek az etalonnak megfelelő 1 cd fényforrás segítségével hitelesítik a gyakorlati mérésekhez használt normálizzók fényerősségét, ill. ehhez viszonyítják a különböző fényforrások fényerősségét. Néhány fényforrás fényerőssége
MegvilágításA megvilágítás (E) a megvilágított A felületre eső Φ fényáram és a megvilágított A felület nagyságának hányadosa. SI-mértékegysége lux (lx): A megvilágítási erősség a felületet érő fény mértéke, megadja, hogy egy adott felület mennyire van kivilágítva, vagyis mekkora fényáram jut 1 m² felületegységre lumenben. 1 lux a megvilágítása annak a felületnek, amelynek 1 négyzetméterére merőlegesen és egyenletesen 1 lumen fényáram esik. Példa: Egy szabadon sugárzó 100 wattos általános izzólámpa 1,5 m magasan felfüggesztve a lámpa alatti felületen hozzávetőleg 100 lx megvilágítási erősséget eredményez.
Tapasztalati tény, hogy egy fényforrás annál nagyobb megvilágítást létesít egy felületen, minél nagyobb a fényerőssége. Ha az A felületre Φ fényáram esik, akkor a megvilágítás vagyis számszerűen megegyezik az egységnyi (1 m²) felületre eső fényárammal. Jellegzetes megvilágítási értékek
FénysűrűségA fénysűrűség (L) az a fizikai mennyiség, mely az emberi szemben a világító vagy a megvilágított felületek által keltett fényérzetet határozza meg, azaz a felületegységre jutó fényerősség. Vonatkozhat nemcsak fényforrásra, hanem megvilágított felületre is. Leggyakrabban a vizsgált felületre merőleges irányban mérjük, de meghatározható más irányban is, ilyen esetben a felületnek a mérési irányra merőleges vetületét keli számításba venni. Mértékegysége: A fénysűrűség értékét úgy kapjuk meg, ha egy fényforrás fényerősség értékét elosztjuk a mérési távolságból mért megvilágítandó felülettel. A fénysűrűség határozza meg a szubjektív fényérzetet. A fénysűrűség azon fénybehatás mértéke, melyet az emberi szem egy önvilágító vagy mesterségesen megvilágított felületről hív elő. A relatív fénysűrűség-különbséget szokás kontrasztnak nevezni. Fotometrikai mérőeszközökA fotometria és a radiometria megkülönböztetéséhez lehetőséget ad a pirométerek elnevezése. Az összsugárzásmérő pirométer az elektromágneses spektrum bármely részének mérésére szolgál, ez gyakran a hősugárzás tartományát jelenti. A részsugárzás mérő pirométer a spektrum egy kis tartományának mérésére való, ez többnyire a látható fény tartományát jelenti. Az első fotometriai méréseket szemmel való összehasonlítással végezték. Az ismeretlen fényt (általában megvilágítást) osztott látóterű vizuális fotométerben hasonlították össze ismert fényforrás által létrehozott megvilágítással. A 20. század elején kifejlesztették az első fotodetektorokat. Magyarországon először az 1920-as évek végén Dr. Urbanek János munkássága alapján készült szelén fényelem elé helyezett színszűrőkkel felépített fotométer. A Magyar Kereskedelmi Engedélyezési Hivatal több fotometriai mennyiség hiteles mérését végzi (Optikai mérések, tájékoztató pdf formában) Az objektív fotometria eszközeiA fény mérésére szolgáló detektorok általában a detektorra eső fényre válaszul elektromos jelet bocsátanak ki. Ez történhet közvetlenül (fotoelektromos eszköz) vagy közvetett módon (termoelektromos detektor). Néhány objektív fotometriai eszköz:
A szubjektív fotometria eszközeiA szubjektív fotometriában a detektor az emberi szem, mely nem alkalmas annak eldöntésére, hogy egy ismeretlen fényerősség hányszorosa egy hitelesített másiknak. Két egymáshoz közeli felület megvilágítását összevetve azonban igen pontosan megmondható, vajon azok egyenlők-e vagy sem. Ezen alapul a szubjektív fotometria. Néhány szubjektív fotometriai eszköz:
Alkalmazások
Irodalom
További információk
Jegyzetek
|
Portal di Ensiklopedia Dunia