TRACETRACE
Télescope spatial Vue d'artiste du satellite TRACE.
TRACE (Transition Region And Coronal Explorer) est un télescope spatial développé par le Centre de vol spatial Goddard, établissement de la NASA, avec pour objectif de réaliser des photos de la couronne et de Région de transition du Soleil avec une résolution angulaire et temporelle élevée. Le télescope, mis en orbite en , a fonctionné durant 12 ans (fin de la mission en ) en fournissant des millions d'images et a fait l'objet de plus 1000 publications scientifiques. De nombreux détails de la structure fine de la couronne solaire ont été observés pour la première fois. ContexteTRACE est une des premières missions du programme Explorer développée en appliquant la stratégie « faster, better, cheaper » (plus vite, mieux, moins cher) mise en place par l'administrateur de la NASA de l'époque Dan Goldin. Le satellite est conçu, fabriqué et testé en moins de quatre ans et il est lancé seulement 1 mois après la date prévue initialement. La construction de TRACE est assurée par le Centre de vol spatial Goddard chargé du programme Explorer. L'instrument est développé par un consortium emmené par le Lockheed Martin Solar and Astrophysics Laboratory (LMSAL) de Palo Alto en Californie. TRACE est le premier observatoire solaire réalisé par la NASA depuis SolarMax mis en orbite en 1980[1]. Ses observations sont complémentaires de l'observatoire européen SoHO (qui comprend une participation instrumentale américaine) lancé 3 ans plus tôt en 1995 mais qui, contrairement à TRACE, équipé uniquement d'un télescope, emporte une vaste gamme d'instruments. Le télescope de TRACE permet de prendre des images détaillées de portions de la photosphère, de la région de transition et de la couronne solaire avec une résolution spatiale 10 à 25 fois meilleure que celle de SoHO tandis que ce dernier fournit des images et des spectres électromagnétiques sur une région s'étendant à 30 rayons solaires. Ensemble les deux observatoires solaires permettent d'effectuer des mesures de tous les régimes de température de l'atmosphère solaire sous forme de photos et de spectres électromagnétiques[2]. Objectifs de la missionTRACE doit permettre pour la première fois d'observer la région de transition solaire et la couronne solaire durant la phase d'activité solaire croissante jusqu'à son point culminant. Les données recueillies doivent permettre de comprendre les variations de l'activité solaire en étudiant les interactions entre le champ magnétique du Soleil observé à petite échelle et la structure à grande échelle du plasma de la couronne solaire. À cet effet TRACE réalise des images haute résolution de la photosphère et de la région de transition vers la couronne. TRACE doit en particulier étudier les phénomènes suivants : le confinement du plasma, le chauffage du plasma et les éruptions solaires[3] :
Caractéristiques techniquesTRACE est un petit engin spatial d'une masse de 250 kg construit autour d'une structure tubulaire en aluminium riveté. Haut de 2 mètres son diamètre maximum est de 1 mètre. Il est stabilisé 3 axes à l'aide de 4 roues de réaction et de magnéto-coupleurs. L'attitude du télescope spatial est déterminée à l'aide de deux gyroscopes à deux axes, un capteur solaire numérique, six capteurs solaires grossiers, un magnétomètre trois axes complété par le recours à petit télescope annexe de utilisant des étoiles guides. L'énergie est fournie par quatre panneaux solaires comportant des cellules photovoltaïques GaAs d'une superficie totale de 2 m² qui sont déployés en orbite et produisent 220 watts. L'énergie est stockée dans une batterie nickel-cadmium de 9 Ah. Les communications sont réalisées en bande S avec un débit sur la liaison montante de 2 kilobits par seconde et sur la liaison descendante de 2,25 mégabits par seconde. L'ordinateur embarqué utilise un microprocesseur 80386/80387 et dispose d'enregistreur à semi-conducteurs de 350 mégabits[4]. InstrumentLe seul instrument de TRACE est un télescope d'un diamètre de 30 cm. Le détecteur de type CCD comporte 1024 × 1024 pixels et le champ de vue 8,5 minutes d'arc. La résolution spatiale est de 1 seconde d'arc. L'image est stabilisée avec une précision de 0,1 seconde d'arc. Son domaine de longueur d'onde va du visible à l'ultra-violet lointain. Des filtres mobiles sont positionnés pour observer à la demande une partie du spectre correspondant aux températures de plasma comprises entre 4000 et 4 millions de kelvins : en lumière visible les longueurs d'onde comprises entre 1700–10000 Å), en ultraviolet proche les longueurs d'onde 1216 Å, 1550~1600 Å et 1700 Å et en ultraviolet lointain les longueurs d'onde 171 Å, 195 Å et 284 Å[5].
L'instrument dérive en grande partie du prototype de télescope en ultraviolet lointain NIXT lancé par une fusée-sonde en 1989 et qui effectua plusieurs vols au début des années 1990. TRACE reprend également des éléments de l'instrument MDI de SoHO lancé en 1995 (CCD, système de stabilisation de l'image, ordinateur et logiciel de traitement des données. Enfin le logiciel chargé de gérer, traiter, compresser et cataloguer les images développés pour l'observatoire spatial japonais Yohkoh lancé en 1991. La réutilisation de tous ces éléments a permis de développer l'instrument avec l'enveloppe budgétaire très réduite disponible pour une mission SMEX du programme Explorer[7]. Déroulement de la missionTRACE est mis en orbite par le lanceur aéroporté Pegasus-XL le . L'avion porteur L-1011 largue la fusée au-dessus de la côte de Californie centrale. Le satellite est placé sur une orbite héliocentrique de 602 x 652 km avec une inclinaison orbitale de 97,8° et une périodicité orbitale de 96 minutes. L'orbite retenue permet d'observer le Soleil sans interruption. La mission primaire a une durée de 1 an, mais elle est prolongée à plusieurs reprises. En 2007 elle est prolongée jusqu'en 2009 pour permettre l'étalonnage de la mission Solar Dynamics Observatory qui doit poursuivre ses observations de la couronne solaire dans l'ultraviolet avec un instrument plus puissant. La mission s'achève le 12 ans après son lancement[4]. Résultats
Références et notes
Bibliographie
Voir aussiArticles connexes
Liens externes
|