Espace complètement régulierEn mathématiques, un espace complètement régulier (ou de Tikhonov) est un espace topologique vérifiant une propriété de séparation plus forte que la séparation usuelle et même que la propriété d'être régulier. DéfinitionUn espace topologique X vérifie la propriété de séparation T3 1/2 si pour tout point x de X et pour tout fermé F de X ne contenant pas x, il existe une application continue de X dans le segment [0, 1] valant 0 en x et 1 sur F (on dit alors que cette application sépare le point du fermé). Un espace est complètement régulier s'il est séparé et vérifie T3 1/2. Il suffit pour cela qu'il vérifie T0 et T3 1/2. Un espace vérifie donc T3 1/2 si et seulement si son quotient de Kolmogorov est complètement régulier. Exemples
CaractérisationsPour tout espace topologique X, les propriétés suivantes sont équivalentes :
Un espace séparé X est complètement régulier si et seulement si X se plonge dans un espace compact, qui peut alors être choisi égal au cube de Tychonoff (en) [0, 1]C(X,[0, 1])[2] ; l'adhérence de X dans ce cube est alors le compactifié de Stone-Čech de X. Propriétés de permanenceLa complète régularité est préservée par sous-espaces et par produits. Plus généralement, la propriété T3 1/2 est préservée par topologie initiale (mais pas la séparation). Comme tous les axiomes de séparation, ces deux propriétés ne sont pas préservées par topologie finale : le quotient du plan de Moore obtenu en identifiant tous les points de ℚ×{0} à l'un d'eux et tous ceux de (ℝ\ℚ)×{0} à l'un d'eux n'est même pas séparé[3]. Notes et références
(de)/(en) Cet article est partiellement ou en totalité issu des articles intitulés en allemand « Vollständig regulärer Raum » (voir la liste des auteurs) et en anglais « Tychonoff space » (voir la liste des auteurs) dont les références étaient :
|
Portal di Ensiklopedia Dunia