Cette méthode est basée sur l'idée qu'une surface nouvellement formée est dépourvue de cratères d'impact, et que ceux-ci s'accumulent ensuite au fil du temps. Pour l'appliquer il faut procéder à un comptage exhaustif (sur toute la surface ou sur une portion représentative) des cratères de diamètre supérieur à un certain seuil (qui dépend de la résolution des photographies ou des images radar disponibles). Il faut aussi être capable d'estimer le taux de cratérisation. Ce dernier a été calibré dans le cas de la Lune grâce aux échantillons ramenés sur Terre par les sondesLuna et les missions Apollo, il a ensuite été extrapolé aux autres corps du Système solaire en tenant compte de leur taille et de leur éloignement du Soleil.
Âges de cratérisation des surfaces lunaires
La détermination du flux des impacts lunaires est essentielle pour contraindre la dynamique et l'accrétion de tous les corps du Système solaire[1],[2],[3]. L'enregistrement des cratères d'impact sur la Lune, très complet, a longtemps conduit à estimer que le flux d'impact lunaire a subi un déclin exponentiel d'environ 4 à 3 Ga (milliards d'années)[4] (avec peut-être un pic entre 4,2 et 3,9 Ga[1],[3]) suivi d'un déclin essentiellement linéaire après 3,2 Ga[4],[5].
L'étalonnage des courbes de flux souffrait cependant d'un manque d'unités géologiques dûment datées à plus de 3,92 Ga ou entre 0,8 et 3,1 Ga[6]. De plus, le flux d'impact directement déduit des densités de cratères est biaisé en raison de la dégradation topographique[7], des différences de propriétés mécaniques des cibles[8] et de l'effacement préférentiel des petits cratères par la formation des plus grands[9],[10]. Par conséquent, l'évolution du flux d'impact lunaire restait incertaine. En 2023, un réexamen des données prenant en compte ces différents artefacts montrant un flux d'impacteurs sensiblement constant depuis environ 3,8 Ga et un flux antérieur supérieur d'un facteur 100 aux estimations antérieures ; les cratères plus anciens que 3,8 Ga ont principalement été produits par des planétésimaux (reliquats de l'accrétion des planètes) plutôt que par des astéroïdes, en cohérence avec la migration précoce des planètes géantes[11].
Âges de cratérisation des surfaces martiennes
La précision des âges obtenus pour les surfaces relativement jeunes de Mars est sujette à controverse en raison de l'abondance des cratères secondaires (cratères d'impact créés par les débris d'un impact principal). Dans le cas, du cratère Zunil, par exemple, on a mis en évidence une centaine de cratères secondaires, dont certains à plus de 1 000 km de l'impact primaire[12],[13].
↑La méthode n'est applicable qu'aux surfaces solides, et ne concerne pas les objets extrasolaires faute de documents photographiques.
Références
↑ a et b(en) William F. Bottke, David Vokrouhlický, David Minton, David Nesvorný, Alessandro Morbidelli et al., « An Archaean heavy bombardment from a destabilized extension of the asteroid belt », Nature, vol. 485, , p. 78-81 (DOI10.1038/nature10967).
↑ a et b(en) A. Morbidelli, D. Nesvorny, V. Laurenz, S. Marchi, D. C. Rubie et al., « The timeline of the lunar bombardment: Revisited », Icarus, vol. 305, , p. 262-276 (DOI10.1016/j.icarus.2017.12.046).
↑ a et b(en) G. Neukum, B. A. Ivanov et W. K. Hartmann , « Cratering Records in the Inner Solar System in Relation to the Lunar Reference System », Space Science Reviews, vol. 96, , p. 55-86 (DOI10.1023/A:1011989004263).
↑(en) Mathieu Le Feuvre et Mark A. Wieczorek, « Nonuniform cratering of the Moon and a revised crater chronology of the inner Solar System », Icarus, vol. 214, no 1, , p. 1-20 (DOI10.1016/j.icarus.2011.03.010).
↑(en) Dieter Stöffler et G. Ryder, « Stratigraphy and Isotope Ages of Lunar Geologic Units: Chronological Standard for the Inner Solar System », Chronology and Evolution of Mars (Space Sciences Series of ISSI), vol. 12, , p. 9-54 (DOI10.1007/978-94-017-1035-0_2).
↑(en) Minggang Xie, Meng-Hua Zhu, Zhiyong Xiao, Yunzhao Wu et Aoao Xu, « Effect of Topography Degradation on Crater Size-Frequency Distributions: Implications for Populations of Small Craters and Age Dating », Geophysical Research Letters, vol. 44, no 20, , p. 10171-10179 (DOI10.1002/2017GL075298).
↑(en) Minggang Xie, Zhiyong Xiao et Aoao Xu, « Time-Dependent Production Functions of Lunar Simple Craters on Layered Targets With Consideration of Topographic Degradation », Geophysical Research Letters, vol. 46, no 20, , p. 10987-10996 (DOI10.1029/2019GL084097).
↑(en) T. Kneissl, G. G. Michael et N. Schmedemann, « Treatment of non-sparse cratering in planetary surface dating », Icarus, vol. 277, , p. 187-195 (DOI10.1016/j.icarus.2016.05.015).
↑(en) Csilla Orgel, Gregory Michael, Caleb I. Fassett, Carolyn H. van der Bogert, Christian Riedel et al., « Ancient Bombardment of the Inner Solar System: Reinvestigation of the “Fingerprints” of Different Impactor Populations on the Lunar Surface », JGR Planets, vol. 123, no 3, , p. 748-762 (DOI10.1002/2017JE005451).